Log in

On the non-integer number of particles in molecular system domains: treatment and description

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The energy of an atomic or molecular system undergoing Coulomb interactions is well known at the integer numbers of its neutral or ionic configurations. Nevertheless, the physical domains (atoms in molecules) inside the whole molecular system possess a non-integer number of particles due to the electron exchange with its surrounding. Hence, the dependence of the energy, the density matrix and their marginal distributions (reduced density matrices) with the number of particles become a problem of fundamental importance in the description of the electron distribution, its properties and transformations. In this work, we present a rigorous mathematical and physical basis for the treatment of this problem within the grand-canonical statistical distribution of few particles. In this context, the derivatives of the energy and the density referred as chemical descriptors (especially chemical potential and hardness) are analyzed in both cases, when the system is isolated and when it is subject to the interaction with an environment. The ground state energy convexity dependence with the number of particles of these systems simplifies the description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szabo A, Ostlund NS (1989) Modern quantum chemistry. Introduction to advanced electronic structure theory. Dover Publications Inc, Mineloa, New York

    Google Scholar 

  2. Helgaker T, Jörgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley Ltd, Chitester

    Book  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1873

    Article  CAS  Google Scholar 

  4. Perdew JP, Parr RG, Levy M, Balduz J Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694

    Article  CAS  Google Scholar 

  5. Perdew JP (1985) In: Dreizler RM, da Providencia J (eds) Density functional theory methods in physics, NATO ASI series. Plenum, New York

    Google Scholar 

  6. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univesity Press, New York

    Google Scholar 

  7. Iczkowski RP, Margrave JL (1961) Electronegativity. J Am Chem Soc 83(17):3547–3551

    Article  CAS  Google Scholar 

  8. Morales J, Martinez TJ (2001) Classical fluctuating charge theories: the maximum entropy valence bond formalism and relationships to previous models. J Phys Chem A 105(12):2842–2850

    Article  CAS  Google Scholar 

  9. Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128(18):184108

    Article  Google Scholar 

  10. Parr RG, Pariser R (2013) In: Ghosh SK, Chattaraj PK (eds) Concepts and methods in modern theoretical chemistry: electronic structure and reactivity. CRC Press, Boca Raton

    Google Scholar 

  11. Valone SM (2011) A concept of fragment hardness, independent of net charge, from a wave-function perspective. J Phys Chem Lett 2(20):2618–2622 and references

    Article  CAS  Google Scholar 

  12. Bochicchio RC, Rial D (2012) Energy convexity and density matrices in molecular systems. J Chem Phys 137(22):226101

    Article  Google Scholar 

  13. Bochicchio RC, Miranda-Quintana RA, Rial D (2013) Reduced density matrices in molecular systems: grand-canonical electron states. J Chem Phys 139(19):199101

    Article  Google Scholar 

  14. Nalewajski RF (1998) Kohn–Sham description of equilibria and charge transfer in reactive systems. Int J Quant Chem 69(4):591–605

    Article  CAS  Google Scholar 

  15. Valone SM, Atlas SR (2006) Energy dependence on fractional charge for strongly interacting subsystems. Phys Rev Lett 97(25):256402

    Article  Google Scholar 

  16. Bochicchio RC, Lain L, Torre A (2003) Atomic valence in molecular systems. Chem Phys Lett 375(1–2):45–53 and references

    Article  CAS  Google Scholar 

  17. Lain L, Torre A, Bochicchio RC (2004) Studies of population analysis at the correlated level: determination of three-center bond indices. J Phys Chem A 108(18):4132–4137 and references

    Article  CAS  Google Scholar 

  18. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  19. Popelier P (1999) Atoms in molecules: an introduction. Pearson Edu, London

    Google Scholar 

  20. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172–5175

    Article  CAS  Google Scholar 

  21. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303

    Article  CAS  Google Scholar 

  22. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  23. Valone SM (2011) Quantum mechanical origins of the Iczkowski–Margrave model of chemical potential. J Chem Theory Comp 7(7):2253–2261

    Article  CAS  Google Scholar 

  24. Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Chem Phys A 111(11):2229–2242

    Article  CAS  Google Scholar 

  25. Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Acc 118(2):371–381

    Article  CAS  Google Scholar 

  26. Coleman AJ, Yukalov VI (2000) Reduced density matrices: Coulson’s challenge. Springer, New York

    Book  Google Scholar 

  27. Gatti C, Macchi P (eds) (2012) Modern charge-density analysis. Springer, Dordrecht

    Google Scholar 

  28. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103(2):304–314

    Article  CAS  Google Scholar 

  29. Alcoba DR, Torre A, Lain L, Bochicchio RC (2005) Energy decompositions according to physical space partitioning schemes. J Chem Phys 122(7):074102

    Article  Google Scholar 

  30. Alcoba DR, Lain L, Torre A, Bochicchio RC (2005) A study of the partitioning of the first-order reduced density matrix according to the theory of atoms in molecules. J Chem Phys 123(14):144113

    Article  Google Scholar 

  31. Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88(4):2547–2553

    Article  CAS  Google Scholar 

  32. Torre A, Alcoba DR, Lain L, Bochicchio RC (2005) Determination of three-center bond indices from population analysis: a fuzzy atom treatment. J Phys Chem A 109(29):6587–6591

    Article  CAS  Google Scholar 

  33. Ter Haar D (1961) Theory and applications of the density matrix. Rep Prog Phys 24(1):304–362

    Article  Google Scholar 

  34. Blum K (1981) Density matrix theory and applications. Plenum, New York

    Book  Google Scholar 

  35. Emch GG (1972) Algebraic methods in statistical mechanics and quantum field theory. Wiley-Interscience, New York

    Google Scholar 

  36. Blaizot JP, Ripka G (2006) Quantum theory of finite systems. The MIT Press, Cambridge

    Google Scholar 

  37. Rosina M (2001) In: Cioslowsky J (ed) Many-electron densities and reduced density matrices. Kluwer, Dordrecht

    Google Scholar 

  38. Mazziotti DA (1998) Contracted Schrödinger equation: determining quantum energies and two-particle density matrices without wave functions. Phys Rev A 57(6):4219–4234

    Article  CAS  Google Scholar 

  39. Hellgren M, Gross EKU (2012) Effect of discontinuities in Kohn–Sham-based chemical reactivity theory. J Chem Phys 136(11):114102

    Article  Google Scholar 

  40. McWeeny R (2001) Methods of molecular quantum mechanics. Academic, San Diego

    Google Scholar 

  41. Kummer H (1967) n-Representability problem for reduced density matrices. J Math Phys 8(10):2063–2081

    Article  Google Scholar 

  42. Paldus J (1976) In: Eyring H, Henderson DJ (eds) Theoretical chemistry: advances and perspectives, vol 2. Academic Press, New York

    Google Scholar 

  43. Surján PR (1989) Second quantized approach to quantum chemistry an elementary introduction. Springer-Verlag, Berlin

    Book  Google Scholar 

  44. Mazziotti DA (ed) (2007) Reduced-Density-matrix mechanics: with application to many-electron atoms and molecules. Advances in chemical physics 134. Wiley

  45. Valdemoro C (1996) Contracting and calculating traces over the N-electron space: two powerful tools for obtaining averages. Int J Quant Chem 60(1):131–139

    Article  CAS  Google Scholar 

  46. Miranda-Quintana RA, Bochicchio RC (2014) Energy dependence with the number of particles: density and reduced density matrices functionals. Chem Phys Lett 593(1):35–39

    Article  CAS  Google Scholar 

  47. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  48. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys 81(6):2862–2863

    Article  CAS  Google Scholar 

  49. Ayers P, Levy M (2000) Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity”. Theor Chem Acc 103(3–4):353–360

    CAS  Google Scholar 

  50. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2014) How to compute the Fukui matrix and function for systems with (quasi-)degenerate states. J Chem Theory Comp 10(1):202–210

    Article  CAS  Google Scholar 

  51. Bultinck P, Clarisse D, Ayers PW, Carbo-Dorca R (2011) The Fukui matrix: a simple approach to the analysis of the Fukui function and its positive character. Phys Chem Chem Phys 13(13):6110–6115

    Article  CAS  Google Scholar 

  52. Cioslowski J, Stefanov BB (1993) Electron flow and electronegativity equalization in the process of bond formation. J Chem Phys 99(7):5151–5162

    Article  CAS  Google Scholar 

  53. Parker SM, Shiozaki T (2014) Active space decomposition with multiple sites: density matrix renormalization group algorithm. J Chem Phys 141(21):211102 and references

    Article  Google Scholar 

  54. Tapia O, Bertrán J (eds) (2003) Solvent effects in chemical reactivity. Kluwer, New York

    Google Scholar 

  55. Surján PR, Ángyán J (1983) Perturbation theory for nonlinear time-independent Schrödinger equations. Phys Rev A 28(1):45–48

    Article  Google Scholar 

  56. Mead CA, Truhlar DG (1982) Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J Chem Phys 77(12):6090–6098

    Article  CAS  Google Scholar 

  57. Davies EB (1976) Quantum theory of open systems. Academic Press, London

    Google Scholar 

  58. Attal S, Joye A, Pillet CA (eds) (2006) Open quantum systems I. The Hamiltonian approach. In: Lecture Notes in Mathematics. Springer, Berlin

  59. Cohen-Tannoudji C, Diu B, Laloë F (1991) Quantum mechanics, vol 1. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This report has been financially supported by Projects 20020130100226BA (Universidad de Buenos Aires) and PIP No. 11220090100061 (Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Bochicchio.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochicchio, R.C. On the non-integer number of particles in molecular system domains: treatment and description. Theor Chem Acc 134, 138 (2015). https://doi.org/10.1007/s00214-015-1743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1743-2

Keywords

Navigation