Log in

Novel orthogonalization and biorthogonalization algorithms

Towards multistate multiconfiguration perturbation theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Orthogonalization with the prerequisite of kee** several vectors fixed is examined. Explicit formulae are derived both for orthogonal and biorthogonal vector sets. Calculation of the inverse or square root of the entire overlap matrix is eliminated, allowing computational time reduction. In this special situation, it is found sufficient to evaluate the functions of matrices of the dimension matching the number of fixed vectors. The (bi)orthogonal sets find direct application in extending multiconfigurational perturbation theory to deal with multiple reference vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Orthonormality of vectors \(\mathbf{c}^i\) is assumed since orthonormalizing m vectors is relatively cheap for \(m \ll N\).

References

  1. Löwdin PO (1950) J Chem Phys 18:365

    Article  Google Scholar 

  2. Löwdin PO (1970) Adv Quantum Chem 5:185

    Article  Google Scholar 

  3. Mayer I (2002) Int J Quantum Chem 90(1):63. doi:10.1002/qua.981

    Article  CAS  Google Scholar 

  4. Mayer I (2003) Simple theorems, proofs, and derivations in quantum chemistry. Kluwer, New York

    Book  Google Scholar 

  5. Wolinski K, Sellers H, Pulay P (1987) Chem Phys Lett 140:225

    Article  CAS  Google Scholar 

  6. Wolinski K, Pulay P (1989) J Chem Phys 90:3647

    Article  CAS  Google Scholar 

  7. van Dam HJJ, van Lenthe JH (1998) Mol Phys 93:431

    Article  Google Scholar 

  8. Werner HJ (1996) Mol Phys 89:645

    Article  CAS  Google Scholar 

  9. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  10. Andersson K, Malmqvist PÅ, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  11. Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922

    Article  CAS  Google Scholar 

  12. Szabados Á, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 122:114104

    Article  Google Scholar 

  13. Kobayashi M, Szabados Á, Nakai H, Surján PR (2010) J Chem Theory Comput 6:2024

    Article  CAS  Google Scholar 

  14. Surján P, Rolik Z, Szabados Á, Kőhalmi D (2004) Ann Phys (Leipzig) 13:223

    Article  Google Scholar 

  15. Mayer I (2000) Theor Chim Acta 104:163

    Article  CAS  Google Scholar 

  16. Nagy P, Surján P, Szabados Á (2012) Theor Chem Acc (Theoretica Chimica Acta) 131:1109. doi:10.1007/s00214-012-1109-y

    Article  Google Scholar 

  17. Limacher PA, Ayers PW, Johnson PA, De Baerdemacker S, Neck DV, Bultinck P (2014) Phys Chem Chem Phys 16:5061

    Article  CAS  Google Scholar 

  18. Nagy PR, Szabados Á (2012) Int J Quantum Chem 113:230

    Article  Google Scholar 

  19. Rayleigh LJWS (1976) The theory of sound, vol 1. Dover, New York

    Google Scholar 

  20. Schrödinger E (1926) Ann Phys 80:437

    Article  Google Scholar 

  21. Lindgren I, Morrison J (1986) Atomic many-body theory. Springer, Berlin

    Book  Google Scholar 

  22. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Hose G, Kaldor U (1979) J Phys B 12:3827

    Article  CAS  Google Scholar 

  24. Meissner L, Bartlett RJ (1989) J Chem Phys 91:4800

    Article  CAS  Google Scholar 

  25. Epstein P (1926) Phys Rev 28:695

    Article  Google Scholar 

  26. Nesbet R (1955) Proc R Soc (Lond) A230:312

    Article  Google Scholar 

  27. Surján PR (1999) Top Curr Chem 203:63

    Article  Google Scholar 

  28. Surján PR, Szabados Á, Jeszenszki P, Zoboki T (2012) J Math Chem 50:534

    Article  Google Scholar 

  29. Jeszenszki P, Nagy PR, Zoboki T, Szabados Á, Surján PR (2014) Int J Quantum Chem 114:1048

    Article  CAS  Google Scholar 

  30. Rassolov VA, Xu F (2007) J Chem Phys 127:044104

    Article  Google Scholar 

  31. Small DW, Head-Gordon M (2009) J Chem Phys 130:084103

    Article  Google Scholar 

  32. Jeszenszki P, Rassolov V, Surján PR, Szabados Á (2015) Mol Phys 113(3–4):249

    Article  CAS  Google Scholar 

  33. Johnson PA, Ayers PW, Limacher PA, Baerdemacker SD, Neck DV, Bultinck P (2013) Comput Theor Chem 1003:101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to a Referee who helped to significantly improve the manuscript. The work presented here is a direct continuation of the research being followed in the laboratory of Péter Surján. It is a delight for the authors—all of them students of prof. Surján for some time in their life—to congratulate him on the occasion of reaching 60 and express their gratitude to the outstanding scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Szabados.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, Z., Nagy, P.R., Jeszenszki, P. et al. Novel orthogonalization and biorthogonalization algorithms. Theor Chem Acc 134, 100 (2015). https://doi.org/10.1007/s00214-015-1703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1703-x

Keywords

Navigation