Log in

Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity beta2-containing nicotinic receptors (β2*nAChRs) are located.

Objectives

We intend to see which brain circuits are activated when nicotine is given in animals naïve for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas.

Materials and methods

We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and beta2 knockout (KO) mice.

Results

Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, beta2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via alpha7 nicotinic receptors.

Conclusions

Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Besson M, David V, Suarez S, Cormier A, Cazala P, Changeux J-P, Granon S (2006) Genetic dissociation of two behaviors associated with nicotine addiction: Beta-2 containing nicotinic receptors are involved in nicotine reinforcement but not in withdrawal syndrome. Psychopharmacology (Berlin) 187:189–199

    Article  CAS  Google Scholar 

  • Besson M, Granon S, Mameli-Engvall M, Cloëz-Tayarani I, Maubourguet N, Cormier A, Cazala P, David V, Changeux JP, Faure P (2007) Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci USA 104:8155–8160

    Article  PubMed  CAS  Google Scholar 

  • Besson M, Suarez SV, Cormier A, Changeux J-P, Granon S (2008) Chronic nicotine exposure has dissociable behavioural effects on control and beta2−/− mice. Behav Genet (in press)

  • Calderan L, Chiamulera C, Marzola P, Fabene PF, Fumagalli GF, Sbarbati A (2005) Sub-chronic nicotine-induced changes in regional cerebral blood volume and transversal relaxation time patterns in the rat: a magnetic resonance study. Neurosci Lett 377:195–199

    Article  PubMed  CAS  Google Scholar 

  • Champtiaux N, Changeux JP (2004) Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system. Prog Brain Res 145:235–251, Review

    PubMed  CAS  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Léna C, Clementi F, Moretti M, Rossi FM, Le Novère N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829

    PubMed  CAS  Google Scholar 

  • Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428

    Article  PubMed  CAS  Google Scholar 

  • Chin C-L, Pauly JR, Surber BW, Skoubis PD, McGaraughty S, Hradil VP, Luo Y, Cox BF, Fox GB (2008) Pharmacological MRI in awake rats predicts selective binding of α4β2 nicotinic receptors. Synapse 62:159–168

    Article  PubMed  CAS  Google Scholar 

  • Choi K-J, Mandeville JB, Chen IY, Kim YR, Jenkins BG (2006) High resolution spatial map** of nicotine action using pharmacologic magnetic resonance imaging. Synapse 60:152–157

    Article  PubMed  CAS  Google Scholar 

  • Clarke KW, Hall LW (1969) “Xylazine”—a new sedative for horses and cattle. Vet Rec 85:512–517

    PubMed  CAS  Google Scholar 

  • Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:198–202

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiéry A, Bourgeois JP, Pons S, Le Sourd A, Pucci B, Changeux JP (2003) An in vitro study of the sub-cellular distribution of nicotinic receptors. Biol Cell 95:373–381

    Article  PubMed  Google Scholar 

  • Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    Article  PubMed  Google Scholar 

  • Fallon S, Shearman E, Sershen H, Lajtha A (2007) The effects of glutamate and GABA receptor antagonists on nicotine-induced neurotransmitter changes in cognitive areas. Neurochem Res 32:535–553

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, Kane VB, Sharp BM (2003) Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology 45:514–523

    Article  PubMed  CAS  Google Scholar 

  • Gäddnäs H, Pietilä K, Ahtee L (2000) Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behav Brain Res 113:65–72

    Article  PubMed  Google Scholar 

  • Girod R, Jareb M, Moss J, Role L (2003) Map** of presynaptic nicotinic acetylcholine receptors using fluorescence imaging of neuritic calcium. J Neurosci Methods 122:109–122

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111

    Article  PubMed  CAS  Google Scholar 

  • Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A (2006) Region-specific effects of nicotine on brain activity: a pharmacological MRI study in the drug-naïve rat. Neuropsychopharmacology 31:1690–1703

    Article  PubMed  CAS  Google Scholar 

  • Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 100:9596–9601

    Article  PubMed  CAS  Google Scholar 

  • Han ZY, Zoli M, Cardona A, Bourgeois JP, Changeux JP, Le Novère N (2003) Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin binding sites in the brain of Macaca mulatta. J Comp Neurol 461:49–60

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ, Taylor RC, Henningfield JE (1994) Nicotine and smoking: a review of effects on human performance. Exp Clin Psychopharmacol 2:345–395

    Article  CAS  Google Scholar 

  • Hiremagalur B, Sabban EL (1995) Nicotine elicits changes in expression of adrenal catecholamine biosynthetic enzymes, neuropeptide Y and immediate early genes by injection but not continuous administration. Brain Res Mol Brain Res 32:109–115

    Article  PubMed  CAS  Google Scholar 

  • Honey GD, Honey RA, Sharar SR, Turner DC, Pomarol-Clotet E, Kumaran D, Simons JS, Hu X, Rugg MD, Bullmore ET, Fletcher PC (2005) Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology 181:445–457

    Article  PubMed  CAS  Google Scholar 

  • Iidaka T, Omori M, Murata T, Kosaka H, Yonekura Y, Okada T, Sadato N (2001) Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. J Cog Neurosci 13:1035–1047

    Article  CAS  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors—implications for models of schizophrenia. Mol Psychiatry 7:837–844

    Article  PubMed  CAS  Google Scholar 

  • Le Magueresse C, Safiulina V, Changeux JP, Cherubini E (2006) Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice. J Physiol 576:533–546

    Article  PubMed  Google Scholar 

  • Léna C, Popa D, Grailhe R, Escourrou P, Changeux JP, Adrien J (2004) Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. J Neurosci 24:5711–5718

    Article  PubMed  Google Scholar 

  • Le Novère N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53:447–456, Review

    Article  PubMed  Google Scholar 

  • Li X, Eisenach JC (2002) Nicotinic acetylcholine receptor regulation of spinal norepinephrine release. Anesthesiology 96:1450–1456

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lohmann C, Myhr KL, Wong ROL (2002) Transmitter-evoked local calcium release stabilizes develo** dendrites. Nature 418:177–181

    Article  PubMed  CAS  Google Scholar 

  • London ED, Connolly RJ, Szikszay M, Wamsley JK, Dam M (1988) Effects of nicotine on local cerebral glucose utilization in the rat. J Neurosci 8:3920–3928

    PubMed  CAS  Google Scholar 

  • Luo F, Li X, Treistman SN, Kim YR, King JA, Fox GB, Ferris CF (2007) Confounding effects of volatile anesthesia on CBV assessment in rodent forebrain following ethanol challenge. J Magnetic Res Imaging 26:557–563

    Article  Google Scholar 

  • Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921

    Article  PubMed  CAS  Google Scholar 

  • Marenco T, Bernstein S, Cumming P, Clarke PB (2000) Effects of nicotine and chlorisondamine on cerebral glucose utilization in immobilized and freely-moving rats. Br J Pharmacol 129:147–155

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Romm E, Bealer SM, Collins AC (1985) A test battery for measuring nicotine effects in mice. Pharmacol Biochem Behav 23:325–330

    Article  PubMed  CAS  Google Scholar 

  • Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM, McIntosh JM, Rossi F, Champtiaux N, Zoli M, Changeux JP (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux J-P, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloëz-Tayarani I, Bemelmans A-P, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux J-P (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107

    Article  PubMed  CAS  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berlin) 190:269–319

    Article  CAS  Google Scholar 

  • Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

    Article  PubMed  CAS  Google Scholar 

  • Pakkanen JS, Jokitalo E, Tuominen RK (2005) Up-regulation of beta2 and alpha7 subunit containing nicotinic acetylcholine receptors in mouse striatum at cellular level. Eur J Nuerosci 21(10):2681–2691

    Article  Google Scholar 

  • Pauly JM, Le Roux P, Nishimura DG, Macovski A (1991) Parameter relations for the Shinnar-Le Roux RF pulse design algorithm. IEEE Trans Med Imag 10:53–65

    Article  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates, 2nd edn. Elsevier Academic, San Diego

    Google Scholar 

  • Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand Y, Le Novere N, Vincent P, Pich EM, Brulet P, Changeux JP (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Léna C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pietila K, Ahtee L (2000) Chronic nicotine administration in the drinking water affects the striatal dopamine in mice. Pharmacol Biochem Behav 66:95–103

    Article  PubMed  CAS  Google Scholar 

  • Rivière D, Papadopoulos-Orfanos D, Régis J, Mangin J-F (2000) A structural browser of brain anatomy. NeuroImage HBM 11:560

    Article  Google Scholar 

  • Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J-F (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. NeuroImage HBM 19:934

    Google Scholar 

  • Rossi S, Singer S, Shearman E, Sershen H, Lajtha A (2005) The effects of cholinergic and dopaminergic antagonists on nicotine-induced cerebral neurotransmitter changes. Neurochem Res 30:541–558

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sato Y (1992) Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 14:242–274

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Wu EX, Bartsch D, Perera GM, Lacefield CO, DeLaPaz R, Mayeux R, Stern Y, Kandel ER (2000) Imaging physiologic dysfunction of individual hippocampal subregions in humans and genetically modified mice. Neuron 28:653–664

    Article  PubMed  CAS  Google Scholar 

  • Stark JA, Davies KE, Williams SR, Luckman SM (2006) Functional magnetic resonance imaging and c-Fos map** in rats following an anorectic dose of m-chlorophenylpiperazine. NeuroImage 31:1228–1237

    Article  PubMed  Google Scholar 

  • Stein EA (2001) fMRI: a new tool for the in vivo localization of drug actions in the brain. J Analyt Toxicol 25:419–424

    CAS  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    PubMed  CAS  Google Scholar 

  • Stolerman IP, Fink R, Jarvik ME (1973) Acute and chronic tolerance to nicotine measured by activity in rats. Psychopharmacologia 30:329–342

    Article  PubMed  CAS  Google Scholar 

  • Uchida S, Kagitani F, Nakayama H, Sato A (1997) Effect of stimulation of nicotinic cholinergic receptors on cortical cerebral blood flow and changes in the effect during aging in anesthetized rats. Neurosci Lett 228:203–206

    Article  PubMed  CAS  Google Scholar 

  • Vafaee and Gjedde 2004 (2004) Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage 21:507–515

    Article  Google Scholar 

  • Valette H, Dollé F, Saba W, Roger G, Hinnen F, Coulon C, Ottaviani M, Syrota A, Bottlaender M (2007) [18F]FPhEP and [18F]F2PhEP, two new epibatidine-based radioligands: evaluation for imaging nicotinic acetylcholine receptors in baboon brain. Synapse 61:764–770

    Article  PubMed  CAS  Google Scholar 

  • Villégier AS, Salomon L, Blanc G, Godeheu G, Glowinski J, Tassin JP (2006) Irreversible blockade of monoamine oxidases reveals the critical role of 5-HT transmission in locomotor response induced by nicotine in mice. Eur J Neurosci 24:1359–1365

    Article  PubMed  Google Scholar 

  • Xu J, Mendrek A, Cohen MS, Monterosso J, Simon S, Jarvik M, Olmstead R, Brody AL, Ernst M, London ED (2007) Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the stroop task. Neuropsychopharmacology 32:1421–1428

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Association pour la Recherche sur les Nicotinanées, which provided a grant to S. Granon and a post-doc grant for S. Suarez. S. Granon was also supported by an ANR grant. D. LeBihan was supported by a grant from the cancéropôle d’Ile-de-France. The Pasteur Institute (Paris), the CNRS, and the CEA also contributed to this work. The authors thank Gilles Bonvento and Vincent Lebon for their help in the setup of the experiments; Uwe Maskos, Philippe Faure, and Arnaud Cressant for comments on the manuscript; and two anonymous referees for their constructive reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Granon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suarez, S.V., Amadon, A., Giacomini, E. et al. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study. Psychopharmacology 202, 599–610 (2009). https://doi.org/10.1007/s00213-008-1338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1338-x

Keywords

Navigation