Log in

Shape and topology optimization for maximum probability domains in quantum chemistry

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This article is devoted to the mathematical and numerical treatments of a shape optimization problem emanating from the desire to reconcile quantum theories of chemistry and classical heuristic models: we aim to identify Maximum Probability Domains (MPDs), that is, domains \(\Omega \) of the 3d space where the probability \({\mathbb {P}}_\nu (\Omega )\) to find exactly \(\nu \) among the n constituent electrons of a given molecule is maximum. In the Hartree-Fock framework, the shape functional \({\mathbb {P}}_\nu (\Omega )\) arises as the integral over \(\nu \) copies of \(\Omega \) and \((n-\nu )\) copies of the complement \({\mathbb {R}}^3 \setminus \Omega \) of an analytic function defined over the space \({\mathbb {R}}^{3n}\) of all the spatial configurations of the n electron system. Our first task is to explore the mathematical well-posedness of the shape optimization problem: under mild hypotheses, we prove that global maximizers of the probability functions \({\mathbb {P}}_\nu (\Omega )\) do exist as open subsets of \({\mathbb {R}}^3\); meanwhile, we identify the associated necessary first-order optimality condition. We then turn to the numerical calculation of MPDs, for which we resort to a level set based mesh evolution strategy: the latter allows for the robust tracking of complex evolutions of shapes, while leaving the room for accurate chemical computations, carried out on high-resolution meshes of the optimized shapes. The efficiency of this procedure is enhanced thanks to the addition of a fixed-point strategy inspired from the first-order optimality conditions resulting from our theoretical considerations. Several three-dimensional examples are presented and discussed to appraise the efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Acke, G., De Baerdemacker, S., Claeys, P.W., Van Raemdonck, M., Poelmans, W., Van Neck, D., Bultinck, P.: Maximum probability domains for hubbard models. Mol. Phys. 114, 1392–1405 (2016)

    Article  Google Scholar 

  2. Agostini, F., Ciccotti, G., Savin, A., Vuilleumier, R.: Maximum probability domains for the analysis of the microscopic structure of liquids. J. Chem. Phys. 142, 064117 (2015). https://doi.org/10.1063/1.4907406

  3. Allaire, G.: Conception optimale de structures, vol. 58 of Collection Mathématiques et Applications, Springer (2007)

  4. Allaire, G., Dapogny, C., Frey, P.: Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. Comptes Rendus Mathématiques de l’Académie des Sciences de Paris 349, 999–1003 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Allaire, G., Dapogny, C., Frey, P.: A mesh evolution algorithm based on the level-set method for geometry and topology optimization. Struct. Multidiscip. Optim. 48, 711–715 (2013)

    Article  MathSciNet  Google Scholar 

  6. Allaire, G., Dapogny, C., Frey, P.: Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282, 22–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Allaire, G., Dapogny, C., Jouve, F.: Shape and topology optimization, to appear in Handbook of Numerical Analysis, Vol. 20, Hal preprint https://hal.archives-ouvertes.fr/hal-02496063/, (2020)

  8. Allaire, G., De Gournay, F., Jouve, F., Toader, A.-M.: Structural optimization using topological and shape sensitivity via a level set method. Control. Cybern. 34, 59 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amstutz, S.: Analysis of a level set method for topology optimization. Optim. Methods Softw. 26, 555–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amstutz, S.: Topological sensitivity analysis and applications in shape optimization, Habilitation thesis, Université d’Avignon, (2011)

  12. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216, 573–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amstutz, S., Dapogny, C., Ferrer, À.: A consistent relaxation of optimal design problems for coupling shape and topological derivatives. Numer. Math. 140, 35–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aslangul, C., Constanciel, R., Daudel, R., Kottis, P.: Aspects of the localizability of electrons in atoms and molecules: Loge theory and related methods. In: Löwdin, P.O. (ed) Advances in quantumchemistry, vol. 6, pp. 93–141. Academic Press, Elsevier (1972)

  15. Ayers, P.L., Boyd, R.J., Bultinck, P., Caffarel, M., Carbo-Dorca, R., Causa, M., Cioslowski, J., Contreras-Garcia, J., Cooper, D.L., Coppens, P., Gatti, C., Grabowsky, S., Lazzeretti, P., Macchi, P., Pendas, A.M., Popelier, P.L.A., Ruedenberg, K., Rzepa, H., Savin, A., Sax, A., Schwarz, W.H.E., Shahbazian, S., Silvi, B., Sola, M., Tsirelson, V.: Six questions on topology in theoretical chemistry. Comput. Theor. Chem. 1053, 2–16 (2015)

    Article  Google Scholar 

  16. Bader, R.F.W.: Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985)

    Article  Google Scholar 

  17. Bader, R.F.W.: A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)

    Article  Google Scholar 

  18. Bader, R.F.W.: Bond paths are not chemical bonds. J. Phys. Chem. A 113, 10391–10396 (2009)

    Article  Google Scholar 

  19. Basdevant, J.-L., Dalibard, J., Joffre, M.: Mécanique quantique, Editions Ecole Polytechnique (2002)

  20. Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular-systems. J. Chem. Phys. 92, 5397–5403 (1990)

    Article  Google Scholar 

  21. Braida, B., Shaik, S., Wu, W., Hiberty, P.C.: Comment on “the ‘inverted bonds’ revisited. analysis of ‘in silico’ models and of 1.1.1 propellane using orbital forces’’. Chem.-a Eur. J. 26, 6935–6939 (2020)

    Article  Google Scholar 

  22. Bui, C., Dapogny, C., Frey, P.: An accurate anisotropic adaptation method for solving the level set advection equation. Int. J. Numer. Meth. Fluids 70, 899–922 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces and Free bound. 5, 301–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cances, E., Keriven, R., Lodier, F., Savin, A.: How electrons guard the space: shape optimization with probability distribution criteria. Theoret. Chem. Acc. 111, 373–380 (2004)

    Article  Google Scholar 

  26. Causà, M., Amore, M., Garzillo, C., Gentile, F., Savin, A.: The bond analysis techniques (ELF and maximum probability domains): application to a family of models relevant to bio-inorganic chemistry. In: Applications of Density Functional Theory to Biological and Bio-inorganic Chemistry, vol. 150 of Structure and Bonding, Springer-Verlag, pp. 119–141 (November 2012)

  27. Causa, M., D’Amore, M., Gentile, F., Menendez, M., Calatayud, M.: Electron localization function and maximum probability domains analysis of semi-ionic oxides crystals, surfaces and surface defects. Comput. Theor. Chem. 1053, 315–321 (2015)

    Article  Google Scholar 

  28. Causà, M., Savin, A.: Maximum probability domains in crystals: the rock-salt structure. J. Phys. Chem. A 115, 13139–13148 (2011)

    Article  Google Scholar 

  29. Causà, M., Savin, A.: Maximum probability domains in the solid-state structures of the elements: the diamond structure. Z. Anorg. Allg. Chem. 637, 882–884 (2011)

    Article  Google Scholar 

  30. Causa, M., Savin, A., Silvi, B.: Atoms and bonds in molecules and chemical explanations. Found. Chem. 16, 3–26 (2014)

    Article  Google Scholar 

  31. Clauss, A.D., Nelsen, S.F., Ayoub, M., Moore, J.W., Landis, C.R., Weinhold, F.: Rabbit-ears hybrids, vsepr sterics, and other orbital anachronisms. Chem. Educ. Res. Pract. 15, 417–434 (2014)

    Article  Google Scholar 

  32. Contreras-Garcia, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.P., Beratan, D.N., Yang, W.T.: Nciplot: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011)

    Article  Google Scholar 

  33. Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dapogny, C., Dobrzynski, C., Frey, P., Froelhy, A.: Mmg. https://www.mmgtools.org, (2019)

  35. Dapogny, C., Frey, P.: Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo: Q. Numer. Anal. Theory Comput. 49, 193–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dapogny, C., Frey, P., Omnès, F., Privat, Y.: Geometrical shape optimization in fluid mechanics using FreeFem++. Struct. Multidiscip. Optim. 58, 2761–2788 (2018)

    Article  MathSciNet  Google Scholar 

  37. Daudel, R.: Sur la localisabilité des corpuscules dans les noyaux et les cortèges électroniques des atomes et des molécules. C. R. Hebd. Seances Acad. Sci. 237, 601–603 (1953)

    MATH  Google Scholar 

  38. Dogan, G., Morin, P., Nochetto, R.H., Verani, M.: Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196, 3898–3914 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC-Press (1992)

  40. Feller, D., Davidson, E.R.: Abinitio studies of 1.1.1 propellane and 2.2.2 propellane. J. Am. Chem. Soc. 109, 4132–4139 (1987)

    Google Scholar 

  41. Feppon, F., Allaire, G., Bordeu, F., Cortial, J., Dapogny, C.: Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. SeMA J. 76, 413–458 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Feppon, F., Allaire, G., Dapogny, C., Jolivet, P.: Topology optimization of thermal fluid-structure systems using body-fitted meshes and parallel computing. J. Comput. Phys. 417, 109574 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Frenking, G., Hermann, M.: Critical comments on “one molecule, two atoms, three views, four bonds?’’. Angew. Chem.-Int. Ed. 52, 5922–5925 (2013)

    Article  Google Scholar 

  44. Frenking, G., Hermann, M.: Comment on “the quadruple bonding in c-2 reproduces the properties of the molecule’’. Chem.-a Eur. J. 22, 18975–18976 (2016)

    Article  Google Scholar 

  45. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian\(\sim \) 16 Revision B.01. Gaussian Inc., Wallingford CT (2016)

    Google Scholar 

  46. Gallegos, A., Carbó-Dorca, R., Lodier, F., Cancès, E., Savin, A.: Maximal probability domains in linear molecules. J. Comput. Chem. 26, 455–460 (2005)

    Article  Google Scholar 

  47. Goudsmit, S.A.: La découverte du spin de l’électron. J. de Phys. 28, 123–128 (1967)

    Article  Google Scholar 

  48. Gournay, F.D.: Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control. Optim. 45, 343–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grabowsky, S.: Complementary Bonding Analysis. De Gruyter STEM, De Gruyter, Berlin, Germany (2020)

    Google Scholar 

  50. Hardt, R.M.: Stratification of real analytic map**s and images. Invent. Math. 28, 193–208 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  51. Henrot, A., Pierre, M.: Shape variation and optimization: a geometrical analysis, vol. 28 of Tracts in Mathematics, European Mathematical Society, Zurich (2018)

  52. Hermann, M., Frenking, G.: The chemical bond in c-2. Chem.-a Eur. J. 22, 4100–4108 (2016)

    Article  Google Scholar 

  53. Hiberty, P.C., Braida, B.: Pleading for a dual molecular-orbital/valence-bond culture. Angew. Chem.-Int. Ed. 57, 5994–6002 (2018)

    Article  Google Scholar 

  54. Hiberty, P.C., Danovich, D., Shaik, S.: Comment on “rabbit-ears hybrids, vsepr sterics, and other orbital anachronisms’’. a reply to a criticism. Chem. Edu. Res. Pract. 16, 689–693 (2015)

    Article  Google Scholar 

  55. Hiberty, P.C., Ramozzi, R., Song, L., Wu, W., Shaik, S.: The physical origin of large covalent-ionic resonance energies in some two-electron bonds. Faraday Discuss. 135, 261–272 (2007)

    Article  Google Scholar 

  56. Hironaka, H.: Subanalytic sets. In: Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, pp. 453–493 (1973)

  57. Hueckel, E.: Quantum contributions to the benzene problem. Z. Angew. Phys. 70, 204–286 (1931)

    Google Scholar 

  58. Hueckel, E.: Quantum contributions to the problem of aromatic and unsaturated compounds. 3. Z. Angew. Phys. 76, 628–648 (1932)

    Google Scholar 

  59. Jackson, J.E., Allen, L.C.: The c1–c3 bond in 1.1.1 propellane. J. Am. Chem. Soc. 106, 591–599 (1984)

    Article  Google Scholar 

  60. Lane, J.R., Contreras-Garcia, J., Piquemal, J.P., Miller, B.J., Kjaergaard, H.G.: Are bond critical points really critical for hydrogen bonding? J. Chem. Theory Comput. 9, 3263–3266 (2013)

    Article  Google Scholar 

  61. Laplaza, R., Contreras-Garcia, J., Fuster, F., Volatron, F., Chaquin, P.: The “inverted bonds’’ revisited: Analysis of “in silico’’ models and of 1.1.1 propellane by using orbital forces. Chem.-a Eur. J. 26, 6839–6845 (2020)

    Article  Google Scholar 

  62. Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916)

    Article  Google Scholar 

  63. Lopes, O.M., Braida, B., Causa, M., Savin, A.: Understanding Maximum Probability Domains with Simple Models. vol. 22 of Progress in Theoretical Chemistry and Physics, pp. 173–184 (2012)

  64. Menéndez, M., Pendás, A.M.: On the stability of some analytically solvable maximum probability domains. Theoret. Chem. Acc. 133, 1539 (2014)

    Article  Google Scholar 

  65. Menendez, M., Pendas, A.M., Braida, B., Savin, A.: A view of covalent and ionic bonding from maximum probability domains. Comput. Theor. Chem. 1053, 142–149 (2015)

    Article  Google Scholar 

  66. Mohammadi, B., Pironneau, O.: Applied shape optimization for fluids. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  67. Murat, F., Simon, J.: Sur le contrôle par un domaine géométrique. Pré-publication du Laboratoire d’Analyse Numérique, (76015), (1976)

  68. Novotny, A.A., Sokołowski, J.: Topological derivatives in shape optimization. Springer Science & Business Media, Berlin/Heidelberg (2012)

    MATH  Google Scholar 

  69. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer Science & Business Media, Berlin/Heidelberg (2006)

    MATH  Google Scholar 

  70. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  71. Parr, R., Weitao, Y.: Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry, Oxford University Press (1994)

  72. Pauling, L.: The nature of the chemical bond. application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931)

    Article  MATH  Google Scholar 

  73. Pauling, L.: The nature of the chemical bond. ii. the one-electron bond and the three-electron bond. J. Am. Chem. Soc. 53, 3225–3237 (1931)

    Article  MATH  Google Scholar 

  74. Pauling, L.: The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca, New York (1939)

    MATH  Google Scholar 

  75. Poater, J., Sola, M., Bickelhaupt, F.M.: Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. Chem.-a Eur. J. 12, 2889–2895 (2006)

    Article  Google Scholar 

  76. Poater, J., Sola, M., Bickelhaupt, F.M.: A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. Chem.-a Eur. J. 12, 2902–2905 (2006)

    Article  Google Scholar 

  77. Pritchard, B.P., Altarawy, D., Didier, B., Gibson, T.D., Windus, T.L.: New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019)

    Article  Google Scholar 

  78. Rivail, J.-L.: Eléments de chimie quantique à l’usage des chimistes, Savoirs Actuels, EDP Sciences CNRS Editions, 2nd ed. (January 1999)

  79. Rudin, W.: Real and complex analysis. Tata McGraw-hill education, New York (2006)

    MATH  Google Scholar 

  80. Savin, A.: Probability distributions and valence shells in atoms. In: A celebration of the contributions of Robert G. Parr, K. D. Sen, ed., vol. 1 of Reviews of Modern Quantum Chemistry, World Scientific, pp. 43–62 (December 2002)

  81. Savin, A.: The electron localization function (elf) and its relatives: interpretations and difficulties. J. Mol. Struct.-Theochem 727, 127–131 (2005)

    Article  Google Scholar 

  82. Savin, A.: On the significance of elf basins. J. Chem. Sci. 117, 473–475 (2005)

    Article  Google Scholar 

  83. Savin, A., Nesper, R., Wengert, S., Fassler, T.F.: Elf: The electron localization function. Angew. Chem.-Int. Ed. 36, 1809–1832 (1997)

    Article  Google Scholar 

  84. Scemama, A.: Investigating the volume maximizing the probability of finding v electrons from variational monte carlo data. J. Theor. & Comput. Chem. 4, 397–409 (2005)

    Article  Google Scholar 

  85. Scemama, A., Caffarel, M., Savin, A.: Maximum probability domains from quantum monte carlo calculations. J. Comput. Chem. 28, 442–454 (2007)

    Article  Google Scholar 

  86. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  87. Shaik, S., Danovich, D., Braida, B., Hiberty, P.C.: The quadruple bonding in c-2 reproduces the properties of the molecule. Chem.-a Eur. J. 22, 4116–4128 (2016)

    Article  Google Scholar 

  88. Shaik, S., Danovich, D., Braida, B., Hiberty, P.C.: A response to a comment by g. frenking and m. hermann on: “the quadruple bonding in c-2 reproduces the properties of the molecule’’. Chem.-a Eur. J. 22, 18977–18980 (2016)

    Article  Google Scholar 

  89. Shaik, S., Danovich, D., Galbraith, J.M., Braida, B., Wu, W., Hiberty, P.C.: Charge-shift bonding: A new and unique form of bonding, Angewandte Chemie-International Edition, pp. 984–1001 (2020)

  90. Shaik, S., Danovich, D., Wu, W., Su, P., Rzepa, H.S., Hiberty, P.C.: Quadruple bonding in c-2 and analogous eight-valence electron species. Nat. Chem. 4, 195–200 (2012)

    Article  Google Scholar 

  91. Shaik, S., Hiberty, P.C.: Chemist’s Guide to Valence Bond Theory, Chemist’s Guide to Valence Bond Theory (2008)

  92. Shaik, S., Maitre, P., Sini, G., Hiberty, P.C.: The charge-shift bonding concept: electron-pair bonds with very large ionic-covalent resonance energies. J. Am. Chem. Soc. 114, 7861–7866 (1992)

    Article  Google Scholar 

  93. Shaik, S., Rzepa, H.S., Hoffmann, R.: One molecule, two atoms, three views, four bonds? Angew. Chem.-Int. Ed. 52, 3020–3033 (2013)

    Article  Google Scholar 

  94. Shoemake, K.: Animating rotation with quaternion curves. In: ACM SIGGRAPH computer graphics, vol. 19, ACM, pp. 245–254 (1985)

  95. Silvi, B., Savin, A.: Classification of chemical-bonds based on topological analysis of electron localization functions. Nat. 371, 683–686 (1994)

    Article  Google Scholar 

  96. Strain, J.: Semi-lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  97. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: introduction to advanced electronic structure theory. Dover Publications, Mineola, New Yor (1996)

    Google Scholar 

  98. Tauvel, P.: Analyse complexe pour la licence 3: cours et exercices corrigés. Dunod, Paris (2006)

    Google Scholar 

  99. Turek, J., Braida, B., De Proft, F.: Bonding in heavier group 14 zero-valent complexes-a combined maximum probability domain and valence bond theory approach. Chem.-a Eur. J. 23, 14604–14613 (2017)

    Article  Google Scholar 

  100. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  101. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)

    Article  Google Scholar 

  102. Wu, W., Gu, J., Song, J., Shaik, S., Hiberty, P.C.: The inverted bond in 1.1.1 propellane is a charge-shift bond. Angew. Chem.-Int. Ed. 48, 1407–1410 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work of C.D. and Y.P. is partly supported by the project ANR-18-CE40-0013 SHAPO, financed by the French Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Privat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braida, B., Dalphin, J., Dapogny, C. et al. Shape and topology optimization for maximum probability domains in quantum chemistry. Numer. Math. 151, 1017–1064 (2022). https://doi.org/10.1007/s00211-022-01305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01305-z

Mathematics Subject Classification

Navigation