Log in

Melatonin modulates L-arginine metabolism in tumor-associated macrophages by targeting arginase 1 in lymphoma

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

L-Arginine metabolism plays a crucial role in determining the M1/M2 polarization of macrophages. The M1 macrophages express inducible nitric oxide synthase (iNOS), while the M2 macrophages express arginase 1 and metabolize arginine into nitric oxide and urea, respectively. The tumor microenvironment promotes M2 macrophage polarization and consequently switches the metabolic fate of arginine from nitric oxide towards urea production. Importantly, infiltration of M2 macrophages or tumor-associated macrophages (TAMs) has been correlated with poor prognosis of various cancer types. Melatonin is well reported to have antitumor and immunomodulatory properties. However, whether and how it impacts the polarization of TAMs has not been elucidated. Considering the crucial role of arginine metabolism in macrophage polarization, we were interested to know the fate of L-arginine in TAMs and whether it can be reinstated by melatonin or not. We used a murine model of Dalton’s lymphoma and established an in vitro model of TAMs. For TAMs, we used the ascitic fluid of tumor-bearing hosts to activate the macrophages in the presence and absence of lipopolysaccharide (LPS). In these groups, L-arginine metabolism was evaluated, and then the effect of melatonin was assessed in these groups, wherein the metabolic fate of arginine as well as the expression of iNOS and arginase 1 were checked. Furthermore, in the in vivo system of the tumor-bearing host, the effect of melatonin was assessed. The in vitro model of TAMs showed a Th2 cytokine profile, reduced phagocytic activity, and increased wound healing ability. Upon investigating arginine metabolism, we observed high urea levels with increased activity and expression of arginase 1 in TAMs. Furthermore, we observed reduced levels of LPS-induced nitric oxide in TAMs; however, their iNOS expression was comparable. With melatonin treatment, urea level decreased significantly, while the reduction in nitric oxide level was not as significant as observed in its absence in TAMs. Also, melatonin significantly reduced arginase activity and expression at the transcriptional and translational levels, while iNOS expression was affected only at the translational level. This effect was further investigated in the in vivo system, wherein melatonin treatment reversed the metabolic fate of arginine, from urea towards nitric oxide, within the tumor microenvironment. This effect was further correlated with pro-apoptotic tumor cell death in the in vivo system. Our results reinforced the immunomodulatory role of melatonin and offered a strong prospect for activating the anti-tumor immune response in cancer conditions.

Graphical abstract

L-arginine metabolism in tumor-associated macrophages (TAMs) within tumor microenvironment and its modulation by melatonin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DL:

Dalton’s lymphoma

DL-TF:

Dalton’s lymphoma tumor milieu factors

IFNY:

Interferon gamma

IL:

Interleukins

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MCM:

Macrophage conditioned medium

NO:

Nitric oxide

TAMs:

Tumor-associated macrophages

TGF-β:

Tumor growth factor beta

TNF-α:

Tumor necrosis factor alpha

VC:

Vehicle control

References 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  • Azizi M, Moradi M, Johari B, Rafiee MH (2019) Simultaneous comparison of L-NAME and melatonin effects on RAW 264.7 cell line’s iNOS production and activity. Turk J Biochem 44(6):840–847

    Article  CAS  Google Scholar 

  • Bak SP, Alonso A, Turk MJ, Berwin B (2008) Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol 46(2):258–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barros MHM, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE 8(11):e80908

    Article  PubMed  PubMed Central  Google Scholar 

  • Baskić D, Aćimović L, Samardžić G, Đurđević P, Đukić A, Arsenijević N (2000) The altered activation state of macrophages isolated from ascitic fluid of patients with peritoneal carcinomatosis. Arch Oncol 8(3):99–103

    Google Scholar 

  • Benner B, Scarberry L, Suarez-Kelly LP, Duggan MC, Campbell AR, Smith E, Lapurga G, Jiang K, Butchar JP, Tridandapani S (2019) Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer 7(1):1–14

    Article  Google Scholar 

  • Caras I, Tucureanu C, Lerescu L, Pitica R, Melinceanu L, Neagu S, Salageanu A (2011) Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction. Tumori J 97(5):647–654

    Article  CAS  Google Scholar 

  • Chang C-I, Liao JC, Kuo L (1998) Arginase modulates nitric oxide production in activated macrophages. Am J Physiol-Heart Circ Physiol 274(1):H342–H348

    Article  CAS  Google Scholar 

  • Chang C-I, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Can Res 61(3):1100–1106

    CAS  Google Scholar 

  • Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 17(23):7230–7239

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wang S, Wang Y, Zhang W, Ma K, Hu C, Zhu H, Liang S, Liu M, Xu N (2018) IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget 9(25):17443

    Article  PubMed  PubMed Central  Google Scholar 

  • Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutando A, Lopez-Valverde A, Arias-Santiago S, De Vicente J, De Diego RG (2012) Role of melatonin in cancer treatment. Anticancer Research 32(7):2747–2753

    PubMed  CAS  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS (2010) Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Can Res 70(19):7465–7475

    Article  CAS  Google Scholar 

  • Edin S, Wikberg ML, Rutegård J, Oldenborg P-A, Palmqvist R (2013) Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells. PLoS ONE 8(9):e74982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Missiry M, Abd El-Aziz A (2000) Influence of melatonin on proliferation and antioxidant system in Ehrlich ascites carcinoma cells. Cancer Lett 151(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Fernandes JCR, Aoki JI, Maia Acuña S, Zampieri RA, Markus RP, Floeter-Winter LM, Muxel SM (2019) Melatonin and Leishmania amazonensis infection altered mir-294, mir-30e, and mir-302d impacting on tnf, mcp-1, and nos2 expression. Front Cell Infect Microbiol 9:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM (2014) The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS ONE 9(4):e94188

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J (2020) Myeloid cell-derived arginase in cancer immune response. Front Immunol 11:938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Y, Liu S-L, Ju W-Z, Li C-Y, Cao P (2013) Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells. Oncol Lett 5(2):483–488

    Article  PubMed  CAS  Google Scholar 

  • Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, Charles K, Gordon S, Balkwill FR (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176(8):5023–5032

    Article  PubMed  CAS  Google Scholar 

  • Hey C, Boucher JL, Vadon-Le Goff S, Ketterer G, Wessler I, Racké K (1997) Inhibition of arginase in rat and rabbit alveolar macrophages by Nω-hydroxy-D, L-indospicine, effects on L-arginine utilization by nitric oxide synthase. Br J Pharmacol 121(3):395–400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollmén M, Roudnicky F, Karaman S, Detmar M (2015) Characterization of macrophage-cancer cell crosstalk in estrogen receptor positive and triple-negative breast cancer. Sci Rep 5(1):1–10

    Article  Google Scholar 

  • Klasen S, Hammermann R, Fuhrmann M, Lindemann D, Beck KF, Pfeilschifter J, Racké K (2001) Glucocorticoids inhibit lipopolysaccharide-induced up-regulation of arginase in rat alveolar macrophages. Br J Pharmacol 132(6):1349–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koiri R, Mehrotra A, Trigun S (2017) Dalton’s lymphoma as a murine model for understanding the progression and development of T-cell lymphoma and its role in drug discovery. Int J Immunother Cancer Res 3:001–006

    Google Scholar 

  • Kumari R, Rawat K, Kumari A, Shrivastava A (2017) Amelioration of Dalton’s lymphoma–induced angiogenesis by melatonin. Tumor Biology 39(6):1010428317705758

    Article  PubMed  Google Scholar 

  • Laranjeira-Silva MF, Zampieri RA, Muxel SM, Floeter-Winter LM, Markus RP (2015) Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. J Pineal Res 59(4):478–487

    Article  PubMed  CAS  Google Scholar 

  • Lee J-H, Lee GT, Woo SH, Ha Y-S, Kwon SJ, Kim W-J, Kim IY (2013) BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10–dependent M2 polarization of tumor-associated macrophages. Can Res 73(12):3604–3614

    Article  CAS  Google Scholar 

  • Leon-Blanco MM, Guerrero JM, Reiter RJ, Calvo JR, Pozo D (2003) Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res 35(3):204–211

    Article  PubMed  CAS  Google Scholar 

  • Li M, He L, Zhu J, Zhang P, Liang S (2022) Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 12(1):1–13

    Article  Google Scholar 

  • Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):1–16

    Article  Google Scholar 

  • Liu S, Madu CO, Lu Y (2018a) The role of melatonin in cancer development. Oncomedicine 3(1):37–47

    Article  Google Scholar 

  • Liu Z, Kuang W, Zhou Q, Zhang Y (2018b) TGF-β1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway. Int J Mol Med 42(6):3395–3403

    PubMed  PubMed Central  CAS  Google Scholar 

  • Malhotra S, Sawhney G, Pandhi P (2004) The therapeutic potential of melatonin: a review of the science. Medscape General Med 6(2)

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237

    Article  PubMed  CAS  Google Scholar 

  • Matos A, Carvalho M, Bicho M, Ribeiro R (2021) Arginine and arginases modulate metabolism, tumor microenvironment and prostate cancer progression. Nutrients 13(12):4503. https://doi.org/10.3390/nu13124503

  • Mayo JC, Sainz RM, Tan D-X, Antolín I, Rodríguez C, Reiter RJ (2005) Melatonin and Parkinson’s disease. Endocrine 27(2):169–178

    Article  PubMed  CAS  Google Scholar 

  • Miret JJ, Kirschmeier P, Koyama S, Zhu M, Li YY, Naito Y, Wu M, Malladi VS, Huang W, Walker W (2019) Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J Immunother Cancer 7(1):1–12

    Article  Google Scholar 

  • Muxel SM, Mamani-Huanca M, Aoki JI, Zampieri RA, Floeter-Winter LM, López-Gonzálvez Á, Barbas C (2019) Metabolomic profile of BALB/c macrophages infected with Leishmania amazonensis: deciphering l-arginine metabolism. Int J Mol Sci 20(24):6248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parajuli P, Singh SM (1996) Alteration in IL-1 and arginase activity of tumor-associated macrophages: a role in the promotion of tumor growth. Cancer Lett 107(2):249–256

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti SK, Ramdas B, Yang K, Zhang C, Stieglitz E, Kapur R (2021) Targeting M2-tumor associated macrophages by arginase-1 and PD-L1 in regulating juvenile myelomonocytic leukemia (JMML) Development and Relapse. Blood 138:1471

    Article  Google Scholar 

  • Rahat MA, Hemmerlein B (2013) Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol 4:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rath M, Müller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawat K, Syeda S, Shrivastava A (2023) A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. Phytomedicine 108:154488

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan D-x, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species. Cell Biochem Biophys 34(2):237–256

    Article  PubMed  CAS  Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1(3):1458

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Can Res 64(16):5839–5849

    Article  CAS  Google Scholar 

  • Rondanelli M, Faliva MA, Perna S, Antoniello N (2013) Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin Exp Res 25(5):499–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ (2001) Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166(4):2173–2177

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Reyes K, Bravo-Cuellar A, Hernández-Flores G, Lerma-Díaz JM, Jave-Suárez LF, Gómez-Lomelí P, de Celis R, Aguilar-Lemarroy A, Domínguez-Rodríguez JR, Ortiz-Lazareno PC (2014) Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in toll-like receptor profile. BioMed Res Int 2014:1–11. https://doi.org/10.1155/2014/683068

  • Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM, Hankey PA (2011) Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol 187(5):2181–2192

    Article  PubMed  CAS  Google Scholar 

  • Shen C-J, Chang C-C, Chen Y-T, Lai C-S, Hsu Y-C (2016) Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of G1 arrest by targeting CDKs. Int J Mol Sci 17(2):176

    Article  PubMed  PubMed Central  Google Scholar 

  • Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267(2):204–215

    Article  PubMed  CAS  Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185(1):642–652

    Article  PubMed  CAS  Google Scholar 

  • Sousa S, Auriola S, Mönkkönen J, Määttä J (2015a) Liposome encapsulated zoledronate favours M1-like behaviour in murine macrophages cultured with soluble factors from breast cancer cells. BMC Cancer 15(1):1–11

    Article  Google Scholar 

  • Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen P-L, Lauttia S, Tynninen O, Joensuu H (2015b) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17(1):1–14

    Article  CAS  Google Scholar 

  • Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, Li W, MacKinnon AL, Makkouk A, Marguier G (2017) Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer 5(1):1–18

    Article  Google Scholar 

  • Suzuki K, Meguro K, Nakagomi D, Nakajima H (2017) Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int 66(3):392–397

    Article  PubMed  CAS  Google Scholar 

  • Talib WH (2018) Melatonin and cancer hallmarks. Molecules 23(3):518

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkasalo PK, Lillberg K, Stevens RG, Hublin C, Partinen M, Koskenvuo M, Kaprio J (2005) Sleep duration and breast cancer: a prospective cohort study. Can Res 65(20):9595–9600

    Article  CAS  Google Scholar 

  • Wang T, Ge Y, **ao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher FJ III (2012) Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res 25(4):493–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Luo X, Chen C, Tang Y, Li L, Mo B, Liang H, Yu S (2020) The Ap-2α/Elk-1 axis regulates Sirpα-dependent tumor phagocytosis by tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther 5(1):1–12

    CAS  Google Scholar 

  • **ang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6(1):1–12

    CAS  Google Scholar 

  • Yan G, Lei H, He M, Gong R, Wang Y, He X, Li G, Pang P, Li X, Yu S (2020) Melatonin triggers autophagic cell death by regulating RORC in Hodgkin lymphoma. Biomed Pharmacother 123:109811

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M (2020) The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 10(11):2156–2170

  • Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10(1):1–12

    Article  Google Scholar 

  • Yao J, Du Z, Li Z, Zhang S, Lin Y, Li H, Zhou L, Wang Y, Yan G, Wu X (2018) 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype. Food Funct 9(9):4611–4620

    Article  PubMed  CAS  Google Scholar 

  • Yap YJ, Ng KY, Koh RY, Chye SM (2019) The pro-apoptotic mechanisms of melatonin in cancer. Malaysian J Biochem Mol Biol 22(3):58–65

  • Zare H, Shafabakhsh R, Reiter RJ, Asemi Z (2019) Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J Ovar Res 12(1):1–8

    Google Scholar 

  • Zea AH, Rodriguez PC, Culotta KS, Hernandez CP, DeSalvo J, Ochoa JB, Park H-J, Zabaleta J, Ochoa AC (2004) L-Arginine modulates CD3ζ expression and T cell function in activated human T lymphocytes. Cell Immunol 232(1–2):21–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q-w, Liu L, Gong C-y, Shi H-s, Zeng Y-h, Wang X-z, Zhao Y-w, Wei Y-q (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7(12):e50946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X (2020) Tumor-associated macrophages: recent insights and therapies. Front Oncol 10:188

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the central instrumentation facility (CIF), Department of Zoology, University of Delhi. Also, the authors are thankful to Prof. Namita Agrawal from the Department of Zoology, University of Delhi, for providing the fluorescence microscope facility.

Funding

This work was supported by research grants to Prof. Anju Shrivastava from the University of Delhi (R&D research grant), DST-PURSE, and a Faculty Research Programme Grant – IoE (Institute of Eminence). The authors received a research fellowship in the form of SRF from CSIR (Council of Scientific and Industrial Research), New Delhi (Anupma Kumari), ICMR (Indian Council of Medical Research), New Delhi (Saima Syeda), and UGC (University Grants Commission), New Delhi (Kavita Rawat and Rani Kumari).

Author information

Authors and Affiliations

Authors

Contributions

AK and AS conceptualized the research. AK performed the experiments and analyzed the results. All the authors did the formal analysis. AK and SS wrote the main manuscript text. All the authors reviewed and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Anju Shrivastava.

Ethics declarations

Ethical approval

The study was performed in accordance with the guidance for the care and use of laboratory animals with the approval of the University of Delhi and the Committee for the Purpose of Control and Suppression of Experiments on Animals (CPCSEA), India (approval number: DU/ZOOL/IAEC-R/2013/38).

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Syeda, S., Rawat, K. et al. Melatonin modulates L-arginine metabolism in tumor-associated macrophages by targeting arginase 1 in lymphoma. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1163–1179 (2024). https://doi.org/10.1007/s00210-023-02676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02676-2

Keywords

Navigation