Log in

p-Adic GKZ hypergeometric complex

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, which are now called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the p-adic counterpart of the GKZ hypergeometric system. The p-adic GKZ hypergeometric complex is a twisted relative de Rham complex of overconvergent differential forms with logarithmic poles. It is an over-holonomic object in the derived category of arithmetic \({{\mathcal {D}}}\)-modules with Frobenius structures. Traces of Frobenius on fibers at Techmüller points of the GKZ hypergeometric complex define the hypergeometric function over the finite field introduced by Gelfand and Graev. Over the non-degenerate locus, the GKZ hypergeometric complex defines an overconvergent F-isocrystal. It is the crystalline companion of the \(\ell \)-adic GKZ hypergeometric sheaf that we constructed before. Our method is a combination of Dwork’s theory and the theory of arithmetic \({{\mathcal {D}}}\)-modules of Berthelot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73, 269–290 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adolphson, A.: Exponential sums and generalized hypergeometric function, I: cohomology spaces and Frobenius action. In: Adolphson, A., Baldassarri, F., Berthelot, P. Katz, N. et al. (eds.) Geometric Aspects of Dwork Theory, vol. I, pp. 1–42. Walter de Gruyter, Berlin (2004)

  3. Abe, T., Caro, D.: Theory of weights in \(p\)-adic cohomology. Am. J. Math. 140, 879–975 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates. Ann. Math. 130, 367–406 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adolphson, A., Sperber, S.: On unit root formulas for toric exponential sums. Algebra Number Theory 6(3), 573–585 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baldassarri, F., Berthelot, P.: On Dwork cohomology for singular hypersurfaces. In: Baldassarri, F., et al. (eds.) Geometric Aspects of Dwork’s Theory, Proceedings of the Dwork Trimester in Italy, May–July 2001, pp. 177–244. de Gruyter, Berlin (2004)

  7. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

    MATH  Google Scholar 

  8. Berthelot, P.: \({{\cal{D}}}\)-modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. Sci. ENS 29, 185–272 (1996)

    MATH  Google Scholar 

  9. Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres. Première Partie, prépublication IRMAR 96–03 Université de Rennes (1996)

  10. Berthelot, P.: Introduction à la théorie arithmétique des \({\cal{D} }\)-modules. Astérisque 279, 1–80 (2002)

    MATH  Google Scholar 

  11. Berthelot, P.: Cohomologie rigide et théorie des \({\cal{D}}\)-modules. In: Proceedings Conference \(p\)-Adic Analysis (Trento 1989). Lecture Notes in Mathematics, vol. 1454, pp. 78–124. Springer, Berlin (1990)

  12. Berthelot, P.: Finitude et pureté cohomologique en cohomologie rigide avec un appendice par Aise Johan de Jong. Invent. Math. 128, 329–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bosch, S., Günzter, U., Remmert, R.: Non-Archimedean Analysis. Springer, Berlin (1984)

    Book  Google Scholar 

  14. Bourgeois, P.: Annulation et pureté des groupes de cohomologie rigide associés à des sommes exponentielles. C. R. Acad. Sci. Paris 328, 681–686 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caro, D.: \({\cal{D} }\)-modules arithmétiques surholonomes. Ann. Sci. ENS 42(1), 141–192 (2009)

    MATH  Google Scholar 

  16. Caro, D.: Fonctions \(L\) associées aux \({\cal{D} }\)-modules arithmétiques. Cas des courbes. Compos. Math. 142, 169–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caro, D.: Stabilité de l’holonomie sur les variétés quasi-projectives. Compos. Math. 147, 1772–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caro, D.: Une caractérisation de la surcohérence. J. Math. Sci. Univ. Tokyo 16, 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Chai, C.L.: Methods for \(p\)-adic monodromy. J. Inst. Math. Jussieu 7(2), 247–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Study in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  21. Fu, L.: Gelfand–Kapranov–Zelevinsky hypergeometric sheaves. In: Proceedings of the Sixth International Congress of Chinese Mathematicians, vol. I. Advanced Lectures in Mathematics (ALM), vol. 36, pp. 281–295. International Press, Somerville (2017)

  22. Fu, L.: \(\ell \)-adic GKZ hypergeometric sheaves and exponential sums. Adv. Math. 298, 51–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fulton, W.: A note on weakly complete algebras. Bull. Am. Math. Soc. 75, 591–593 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gelfand, I.M., Graev, M.I.: Hypergeometric functions over finite fields, English translation. Dokl. Math. 64, 402–406 (2001)

    Google Scholar 

  25. Gelfand, I.M., Graev, M.I., Retakh, V.S.: General hypergeometric systems of equations and series of hypergeometric type, English translation. Russ. Math. Surv. 47, 1–88 (1992)

    Article  Google Scholar 

  26. Gelfand, I.M., Graev, M.I., Retakh, V.S.: Hypergeometric functions over an arbitrary field, English translation. Russ. Math. Surv. 59, 831–905 (2004)

    Article  MATH  Google Scholar 

  27. Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties, English translation. Funct. Anal. Appl. 23, 94–106 (1989) [Correction to the paper “Hypergeometric functions and toric varieties”, English translation. Funct. Anal. Appl. 27, 295 (1995)]

  28. Grothendieck, A.: Revêtements Étales et Groupe Fondamental (SGA 1). Lecture Notes in Mathematics, vol. 224. Springer, Berlin (1971)

  29. Huyghe, C.: \({\cal{D} }^\dagger (\infty )\)-affinité des schémas projectifs. Ann. Inst. Fourier 48, 913–956 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Igusa, J.: On the algebraic theory of elliptic modular functions. J. Math. Soc. Jpn. 20, 96–106 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Katz, N.: Slope filtration of \(F\)-crystals. Astérisque 63, 113–163 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Katz, N.: Gauss sums, Kloosterman sums, and Monodromy groups. Ann. Math. Stud. 116 (1988)

  33. Li, P.: Exponential sums and rigid cohomology. Thesis at Tsinghua University

  34. Liu, R.C., Wan, D.: Artin conjecture for \(p\)-adic Galois representations of function fields. Math. Res. Lett. 25(1), 143–157 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miyatani, K.: \(p\)-adic generalized hypergeometric equations from the viewpoint of arithmetic \({\cal{D}}\)-modules. Am. J. Math. 142, 1017–1050 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Monsky, P.: \(p\)-Adic Analysis and Zeta Functions. Lecture in Mathematics. Kyoto University, Kinokuniya Bookstore, Tokyo (1970)

  37. Ogus, A.: F-isocrystals and de Rham cohomology II, convergent isocrystals. Duke Math. J 51(4), 765–850 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wan, D.: Newton polygons of zeta functions and \(L\)-functions. Ann. Math. 137(2), 249–293 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wan, D.: Higher rank case of Dwork’s conjecture. J. Am. Math. Soc. 13(4), 807–852 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wan, D.: Rank one case of Dwork’s conjecture. J. Am. Math. Soc. 13(4), 853–908 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wan, D.: Variation of \(p\)-adic Newton polygons for \(L\)-functions of exponential sums. Asian J. Math. 13(3), 427–471 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Fu or Hao Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank the referee for careful reading of the paper and for many suggestions improving the paper. The research of Lei Fu is supported by NSFC12171261 and 2021YFA 1000700.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Li, P., Wan, D. et al. p-Adic GKZ hypergeometric complex. Math. Ann. 387, 1629–1689 (2023). https://doi.org/10.1007/s00208-022-02491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02491-9

Mathematics Subject Classification

Navigation