Log in

On the spectrum of lamplighter groups and percolation clusters

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \({\mathfrak{G}}\) be a finitely generated group and X its Cayley graph with respect to a finite, symmetric generating set S. Furthermore, let \({\mathfrak{H}}\) be a finite group and \({\mathfrak{H}\wr\mathfrak{G}}\) the lamplighter group (wreath product) over \({\mathfrak{G}}\) with group of “lamps” \({\mathfrak{H}}\) . We show that the spectral measure (Plancherel measure) of any symmetric “switch–walk–switch” random walk on \({\mathfrak{H}\wr\mathfrak{G}}\) coincides with the expected spectral measure (integrated density of states) of the random walk with absorbing boundary on the cluster of the group identity for Bernoulli site percolation on X with parameter \({\mathsf{p} = 1/|\mathfrak{H}|}\) . The return probabilities of the lamplighter random walk coincide with the expected (annealed) return probabilities on the percolation cluster. In particular, if the clusters of percolation with parameter \({\mathsf{p}}\) are almost surely finite then the spectrum of the lamplighter group is pure point. This generalizes results of Grigorchuk and Żuk, resp. Dicks and Schick regarding the case when \({\mathfrak{G}}\) is infinite cyclic. Analogous results relate bond percolation with another lamplighter random walk. In general, the integrated density of states of site (or bond) percolation with arbitrary parameter \({\mathsf{p}}\) is always related with the Plancherel measure of a convolution operator by a signed measure on \({\mathfrak{H}\wr\mathfrak{G}}\) , where \({\mathfrak{H}=\mathbb{Z}}\) or another suitable group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axiom (various authors), http://axiom-wiki.newsynthesis.org/FrontPage

  2. Bartholdi, L., Grigorchuk, R., Nekrashevych, V.: From fractal groups to fractal sets. In: Grabner, P.M., Woess, W.(eds) Fractals in Graz 2001, Trends in Mathematics., pp. 25–118. Birkhäuser, Basel (2003)

    Google Scholar 

  3. Bartholdi, L., Neuhauser, M., Woess, W.: Horocyclic products of trees. J. Eur. Math. Soc. (to appear)

  4. Bartholdi, L., Woess, W.: Spectral computations on lamplighter groups and Diestel-Leader graphs. J. Fourier Anal. Appl. 11, 175–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Group-invariant percolation on graphs. Geom. Funct. Anal. 9, 29–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dicks, W., Schick, Th.: The spectral measure of certain elements of the complex group ring of a wreath product. Geom. Dedicata 93, 121–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunford, N., Schwarz, J.T.: Linear Operators, Parts I and II. Interscience, New York (1963)

    Google Scholar 

  8. Grigorchuk, R.I., Żuk, A.: The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata 87, 209–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grigorchuk, R.I., Linnell, P., Schick, Th., Żuk, A.: On a question of Atiyah. C. R. Acad. Sci. Paris Sér. I Math. 331, 663–668 (2000)

    MATH  Google Scholar 

  10. Grimmett, G.: Percolation 2nd edn. Grundl. Math. Wiss. 321. Springer, Berlin (1999)

  11. Hughes, B.D.: Random Walks and Random Environments. Vol. 1. Random walks. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  12. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kesten, H.: The critical probability of bond percolation on the square lattice equals \({\frac{1}{2}}\). Comm. Math. Phys. 74, 41–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirkpatrick, S., Eggarter, T.P.: Localized states of a binary alloy. Phys. Rev. B 6, 3598–3609 (1972)

    Article  Google Scholar 

  15. Kirsch, W., Müller, P.: Spectral properties of the Laplacian on bond-percolation graphs. Math. Z. 252, 899–916 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krön, B.: Green functions on self-similar graphs and bounds for the spectrum of the Laplacian. Ann. Inst. Fourier (Grenoble) 52, 1875–1900 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Lyons, R., Peres, Y.: Probability on Trees and Networks, http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

  18. Pittet, C., Saloff-Coste, L.: On random walks on wreath products. Ann. Probab. 30, 948–977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Revelle, D.: Heat kernel asymptotics on the lamplighter group. Electron. Comm. Probab. 8, 142–154 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Sabot Ch. (2003) Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92, vi+104 pp.

  21. Scarabotti, F., Tolli, F.: Harmonic analysis of finite lamplighter random walks University of Roma I. J. Dyn. Contr. Syst. (2008) (to appear)

  22. Scarabotti, F., Tolli, F.: Spectral analysis of finite Markov chains with spherical symmetries. Adv. Appl. Math. 38, 445–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Serre, J.-P.: Représentations Linéaires des Groupes Finis, 3rd revised edition. Hermann, Paris (1978)

    Google Scholar 

  24. Takesaki, M.: Theory of Operator Algebras I. Springer, New York (1976)

    Google Scholar 

  25. Teplyaev, A.: Spectral analysis on infinite Sierpiński gaskets. J. Funct. Anal. 159, 537–567 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Valette, A.: Introduction to the Baum–Connes conjecture Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002)

    Google Scholar 

  27. Veselić, I.: Spectral analysis of percolation Hamiltonians. Math. Ann. 331, 841–865 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woess, W.: A note on the norms of transition operators on lamplighter graphs and groups. Int. J. Algebra Comput 15, 1261–1272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Żuk, A.: A generalized Følner condition and the norms of random walk operators on groups. l’Enseignement Math. 45, 1–28 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Lehner.

Additional information

M. Neuhauser’s research supported by the Marie-Curie Excellence Grant MEXT-CT-2004-517154.

The research of W. Woess was partially supported by Austrian Science Fund (FWF) P18703-N18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehner, F., Neuhauser, M. & Woess, W. On the spectrum of lamplighter groups and percolation clusters. Math. Ann. 342, 69–89 (2008). https://doi.org/10.1007/s00208-008-0222-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0222-7

Mathematics Subject Classification (2000)

Navigation