Log in

Large-scale Regularity of Nearly Incompressible Elasticity in Stochastic Homogenization

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we systematically study the regularity theory of the linear system of nearly incompressible elasticity. In the setting of stochastic homogenization, we develop new techniques to establish the large-scale estimates of displacement and pressure, which are uniform in both the scale parameter and the incompressibility parameter. In particular, we obtain the boundary estimates in a new class of Lipschitz domains whose boundaries are smooth at large scales and bumpy at small scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Without ambiguity, we write \(u^\varepsilon _\lambda \), instead of \(u^\varepsilon _{\lambda _0}\), for short.

References

  1. Acosta, G., Durán, R.G., Muschietti, M.A.: Solutions of the divergence operator on John domains. Adv. Math. 206(2), 373–401, 2006

    Article  MathSciNet  Google Scholar 

  2. Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347(2), 315–361, 2016

    Article  ADS  MathSciNet  Google Scholar 

  3. Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: The additive structure of elliptic homogenization. Invent. Math. 208(3), 999–1154, 2017

    Article  ADS  MathSciNet  Google Scholar 

  4. Armstrong, S.N., Kuusi, T., Mourrat, J.-C.: Quantitative stochastic homogenization and large-scale regularity. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 352. Springer, Cham (2019)

  5. Armstrong, S.N., Mourrat, J.-C.: Lipschitz regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219(1), 255–348, 2016

    Article  MathSciNet  Google Scholar 

  6. Armstrong, S.N., Shen, Z.: Lipschitz estimates in almost-periodic homogenization. Commun. Pure Appl. Math. 69(10), 1882–1923, 2016

    Article  MathSciNet  Google Scholar 

  7. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481, 2016

    Article  MathSciNet  Google Scholar 

  8. Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847, 1987

    Article  MathSciNet  Google Scholar 

  9. Avellaneda, M., Lin, F.: Compactness methods in the theory of homogenization. II. Equations in nondivergence form. Commun. Pure Appl. Math. 42(2), 139–172, 1989

    Article  MathSciNet  Google Scholar 

  10. Basson, A., Gérard-Varet, D.: Wall laws for fluid flows at a boundary with random roughness. Commun. Pure Appl. Math. 61(7), 941–987, 2008

    Article  MathSciNet  Google Scholar 

  11. Dalibard, A., Gérard-Varet, D.: Effective boundary condition at a rough surface starting from a slip condition. J. Differ. Equ. 251(12), 3450–3487, 2011

    Article  ADS  MathSciNet  Google Scholar 

  12. Dalibard, A., Prange, C.: Well-posedness of the Stokes–Coriolis system in the half-space over a rough surface. Anal. PDE 7(6), 1253–1315, 2014

    Article  MathSciNet  Google Scholar 

  13. Dohrmann, C.R., Widlund, O.B.: An overlap** Schwarz algorithm for almost incompressible elasticity. SIAM J. Numer. Anal. 47(4), 2897–2923, 2009

    Article  MathSciNet  Google Scholar 

  14. Gérard-Varet, D.: The Navier wall law at a boundary with random roughness. Commun. Math. Phys. 286(1), 81–110, 2009

    Article  ADS  MathSciNet  Google Scholar 

  15. Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Commun. Math. Phys. 295(1), 99–137, 2010

    Article  ADS  MathSciNet  Google Scholar 

  16. Giaquinta, M., Modica, G.: Nonlinear systems of the type of the stationary Navier–Stokes system. J. Reine Angew. Math. 330, 173–214, 1982

    MathSciNet  MATH  Google Scholar 

  17. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. 199(2), 455–515, 2015

    Article  ADS  MathSciNet  Google Scholar 

  18. Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. (JEMS) 19(11), 3489–3548, 2017

    Article  MathSciNet  Google Scholar 

  19. Gu, S.: Convergence rates in homogenization of Stokes systems. J. Differ. Equ. 260(7), 5796–5815, 2016

    Article  ADS  MathSciNet  Google Scholar 

  20. Gu, S., Shen, Z.: Homogenization of Stokes systems and uniform regularity estimates. SIAM J. Math. Anal. 47(5), 4025–4057, 2015

    Article  MathSciNet  Google Scholar 

  21. Gu, S., Xu, Q.: Optimal boundary estimates for stokes systems in homogenization theory. SIAM J. Math. Anal. 49(5), 3831–3853, 2017

    Article  MathSciNet  Google Scholar 

  22. Gu, S., Zhuge, J.: Periodic homogenization of Green’s functions for Stokes systems. Calc. Var. Partial Differ. Equ. 58(3), 114, 46, 2019

    Article  MathSciNet  Google Scholar 

  23. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191(17–18), 1895–1908, 2002

    Article  ADS  MathSciNet  Google Scholar 

  24. Herrmann, L.R.: Elasticity equations of incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900, 1965

    Article  ADS  MathSciNet  Google Scholar 

  25. Higaki, M., Prange, C.: Regularity for the stationary Navier–Stokes equations over bumpy boundaries and a local wall law. Calc. Var. Partial Differ. Equ. 59(4), 131, 46, 2020

    Article  MathSciNet  Google Scholar 

  26. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  27. Jones, P.W.: Quasiconformal map**s and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88, 1981

    Article  MathSciNet  Google Scholar 

  28. Kenig, C.E., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26(4), 901–937, 2013

    Article  MathSciNet  Google Scholar 

  29. Kenig, C.E., Prange, C.: Uniform Lipschitz estimates in bumpy half-spaces. Arch. Ration. Mech. Anal. 216(3), 703–765, 2015

    Article  MathSciNet  Google Scholar 

  30. Kenig, C.E., Prange, C.: Improved regularity in bumpy Lipschitz domains. J. Math. Pures Appl. (9) 113, 1–36, 2018

    Article  MathSciNet  Google Scholar 

  31. Kouhia, R., Stenberg, R.: A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Eng. 124(3), 195–212, 1995

    Article  ADS  MathSciNet  Google Scholar 

  32. Mott, P.H., Dorgan, J.R., Roland, C.M.: The bulk modulus and Poisson’s ratio of “incompressible’’ materials. J. Sound Vib. 312(4–5), 572–575, 2008

    Article  ADS  Google Scholar 

  33. Mott, P.H., Roland, C.M.: Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B 80(132104), 1–4, 2009

    Google Scholar 

  34. Mourrat, J.-C., Nolen, J.: Scaling limit of the corrector in stochastic homogenization. Ann. Appl. Probab. 27(2), 944–959, 2017

    Article  MathSciNet  Google Scholar 

  35. Oleĭnik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization. In: Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992)

  36. Rogers, L.G.: Degree-independent Sobolev extension on locally uniform domains. J. Funct. Anal. 235(2), 619–665, 2006

    Article  MathSciNet  Google Scholar 

  37. Shen, Z.: Boundary estimates in elliptic homogenization. Anal. PDE 10(3), 653–694, 2017

    Article  MathSciNet  Google Scholar 

  38. Shen, Z.: Periodic homogenization of elliptic systems. In: Operator Theory: Advances and Applications, vol. 269, Birkhäuser/Springer, Cham, Advances in Partial Differential Equations (Basel) (2018)

  39. Temam, R.: Navier–Stokes equations. In: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI, (2001), Reprint of the 1984 edition

  40. Vogelius, M.: An analysis of the \(p\)-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numer. Math. 41(1), 39–53, 1983

    Article  MathSciNet  Google Scholar 

  41. Xu, Q.: Convergence rates and \(W^{1, p}\) estimates in homogenization theory of Stokes systems in Lipschitz domains. J. Differ. Equ. 263(1), 398–450, 2017

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Both of the authors would like to thank Professor Fanghua Lin for the helpful comments after the second author reporting the results of this paper in the SUSTech PDE Workshop in Shenzhen. Both of the authors would like to thank Professor Hongjie Dong for pointing out a mistake in an early version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **** Zhuge.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Zhuge, J. Large-scale Regularity of Nearly Incompressible Elasticity in Stochastic Homogenization. Arch Rational Mech Anal 244, 1311–1372 (2022). https://doi.org/10.1007/s00205-022-01772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01772-6

Navigation