Log in

Simultaneous removal of aliphatic and aromatic crude oil hydrocarbons by Pantoea agglomerans isolated from petroleum-contaminated soil in the west of Iran

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L−1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L−1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L−1 h−1 was observed for P. agglomerans. The gas chromatography–mass spectroscopy (GC–MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author.

Abbreviations

NA:

Nutrient agar

CFU:

Colony forming unit

C/N:

Carbon/nitrogen

TPH:

Total petroleum hydrocarbon

GC–MS:

Gas chromatography–mass spectroscopy

dS/m:

Decisiemens per meter

SARA:

Saturate, aromatic, resin and asphaltene (SARA) fractions

PIA:

Petroleum industry act

FID:

Flame-ionization detection

BLAST:

Basic Local Alignment Search Tool

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699

    Article  PubMed  CAS  Google Scholar 

  • Abbasian F, Lockington R, Megharaj M, Naidu R (2016) A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Appl Biochem Biotechnol 178:224–250

    Article  PubMed  CAS  Google Scholar 

  • Abena MTB, Li T, Shah MN, Zhong W (2019) Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere 234:864–874

    Article  ADS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytorem 14:35–47

    Article  Google Scholar 

  • Ambust S, Das AJ, Kumar R (2021) Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments. Curr Res Microb Sci 2:100031

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anza M, Salazar O, Epelde L, Becerril JM, Alkorta I, Garbisu C (2019) Remediation of organically contaminated soil through the combination of assisted phytoremediation and bioaugmentation. Appl Sci 9:4757

    Article  CAS  Google Scholar 

  • Aresta M, Acquaviva M, Baruzzi F, Lo Noce R, Matarante A, Narracci M, Stabili L, Cavallo R (2010) Isolation and characterization of polyphenols-degrading bacteria from olive-mill wastewaters polluted soil. World J Microbiol Biotechnol Adv 26:639–647

    Article  CAS  Google Scholar 

  • Ashraf W, Mihdhir A, Colin Murrell J (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayuso-Calles M, Flores-Félix JD, Rivas R (2021) Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy 11:1759

    Article  CAS  Google Scholar 

  • Borkar SG (2018) Laboratory Techniques in Plant Bacteriology. CRC Press

    Google Scholar 

  • Cappello S, Santisi S, Calogero R, Hassanshahian M, Yakimov M (2012) Characterisation of oil-degrading bacteria isolated from bilge water. Water Air Soil Pollut 223:3219–3226

    Article  ADS  CAS  Google Scholar 

  • Celik GY, Aslim B, Beyatli Y (2008) Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100. J Environ Biol 29:867–870

    PubMed  Google Scholar 

  • Cho E, Park M, Hur M, Kang G, Kim YH, Kim S (2019) Molecular-level investigation of soils contaminated by oil spilled during the Gulf War. J Hazard Mater 373:271–277

    Article  PubMed  CAS  Google Scholar 

  • Chukwu L, Odunzeh C (2006) Relative toxicity of spent lubricant oil and detergent against benthic macro-invertebrates of a West African estuarine lagoon. J Environ Biol 27:479–484

    PubMed  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Article  PubMed  Google Scholar 

  • Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J (2016) Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann Agric Environ Med 23:206–22

    Article  PubMed  CAS  Google Scholar 

  • Guo X, **e C, Wang L, Li Q, Wang Y (2019) Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environ Sci Pollut Res 26:8429–8443

    Article  CAS  Google Scholar 

  • Habibi A, Babaei F (2017) Biological treatment of real oilfield-produced water by bioaugmentation with sophorolipid-producing Candida catenulata. Environ Process 4:891–906

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol-and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H, Dong H, Zhangf G, Yu B, Chapman L, Fields M (2006) Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline lake in Northwestern China. Appl Environ Microbiol 72:3832–3845

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar AG, Vijayakumar L, Joshi G, Peter DM, Dharani G, Kirubagaran R (2014) Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment. Biores Technol 170:556–564

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lalucat J, Gomila M, Mulet M, Zaruma A, García-Valdés E (2022) Past, present and future of the boundaries of the Pseudomonas genus: proposal of Stutzerimonas gen. Nov. Syst Appl Microbiol 45:126289

    Article  PubMed  CAS  Google Scholar 

  • Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25:856

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Yang B, Shen J, Du N (2009) Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr Microbiol 59:341–345

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  PubMed  CAS  Google Scholar 

  • Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mcfarlin KM, Prince RC (2021) Oil contaminated soil: understanding biodegradation and remediation strategies. In: Konur O (ed) Petrodiesel fuels. Boca Raton, FL, CRC Press

    Google Scholar 

  • Mukherji S, Ghosh IJMDOX (2012). Bacterial degradation of high molecular weight polynuclear aromatic hydrocarbons. In: Microbial degradation of xenobiotics. Springer

  • Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol Adv 25:1615–1623

    Article  CAS  Google Scholar 

  • Okoh A (2003) Biodegradation of Bonny light crude oil in soil microcosm by some bacterial strains isolated from crude oil flow stations saver pits in Nigeria. Afr J Biotech 2:104–108

    Article  CAS  Google Scholar 

  • Onifade A, Abubakar F (2007) Characterization of hydrocarbon-degrading microorganisms isolated from crude oil contaminated soil and remediation of the soil by enhanced natural attenuation. Res J Microbiol 2:149–155

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Poliwoda A, Piotrowska-Seget Z (2014) Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ Sci Pollut Res 21:9385–9395

    Article  Google Scholar 

  • Pacwa-Płociniczak M, Czapla J, Płociniczak T, Piotrowska-Seget Z (2019) The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol Environm Saf 169:615–622

    Article  Google Scholar 

  • Park C, Park W (2018) Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential. Front Microbiol 9:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Pepper I, Brusseau M (2019) Physical-chemical characteristics of soils and the subsurface. In: Environmental pollution science, pp 9–22

  • Poorsoleiman MS, Hosseini SA, Etminan A, Abtahi H, Koolivand A (2020) Effect of two-step bioaugmentation of an indigenous bacterial strain isolated from oily waste sludge on petroleum hydrocarbons biodegradation: scaling-up from a liquid mineral medium to a two-stage composting process. Environ Technol Innov 17:100558

    Article  CAS  Google Scholar 

  • Rademaker JL, Bruijn FJD (1997) Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: DNA markers: protocols, application and overviews, pp 151–171

  • Radwan SS, Al-Mailem DM, Kansour MK (2019) Bioaugmentation failed to enhance oil bioremediation in three soil samples from three different continents. Sci Rep 9:1–11

    Article  Google Scholar 

  • Rahman K, Banat I, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Biores Technol 81:25–32

    Article  CAS  Google Scholar 

  • Rajkumari J, Bhuyan B, Das N, Pandey P (2019) Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environ Sustain 2:311–328

    Article  CAS  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Handbook of hydrocarbon lipid microbiology. Springer, Berlin

  • Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria. American Phytopathological Society (APS Press)

  • Schafer AN, Snape I, Siciliano SD (2009) Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil. Environ Toxicol Chem 28:1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Song Y-J (2009) Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Microbiol Biotechnol Lett 37:333–339

    CAS  Google Scholar 

  • Sun W, Ali I, Liu J, Dai M, Cao W, Jiang M, Saren G, Yu X, Peng C, Naz I (2019) Isolation, identification, and characterization of diesel-oil-degrading bacterial strains indigenous to Changqing oil field, China. J Basic Microbiol 59:723–734

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Biores Technol 223:277–286

    Article  CAS  Google Scholar 

  • Varjani SJ, Joshi RR, Senthil Kumar P, Srivastava VK, Kumar V, Banerjee C, Praveen Kumar R (2018) Polycyclic aromatic hydrocarbons from petroleum oil industry activities: effect on human health and their biodegradation. In: Varjani SJ, Gnansounou E, Gurunathan B, Pant D, Zakaria ZA (eds) Waste bioremediation. Springer, Singapore

    Chapter  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136–141

    Article  PubMed  CAS  Google Scholar 

  • Venosa AD, Haines JR, Allen DM (1992) Efficacy of commercial inocula in enhancing biodegradation of weathered crude oil contaminating a Prince William Sound beach. J Ind Microbiol Biotechnol 10:1–11

    CAS  Google Scholar 

  • Victor IA, Iwok EO, Archibong IA, Effiom OE, Okon E, Andem AB (2020) The biochemical mechanisms of petroleum degradation by bacteria. Int J Sci Eng Res 11:1258–1275

    Google Scholar 

  • Vidonish JE, Zygourakis K, Masiello CA, Sabadell G, Alvarez PJ (2016) Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2:426–437

    Article  CAS  Google Scholar 

  • Vriezen JA, De Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73:3451–3459

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Wu J, Zhang X, Ye X (2019) Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere 237:124456

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low-Carbon Technol 13:338–352

    Google Scholar 

  • Zhao D, Liu C, Liu L, Zhang Y, Liu Q, Wu W-M (2011) Selection of functional consortium for crude oil-contaminated soil remediation. Int Biodeterior Biodegrad 65:1244–1248

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

SH: conceptualization, investigation, methodology, software, writing—original draft, writing—review and editing; RS: conceptualization, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review and editing; AH: methodology, writing—review and editing; and all authors approved the final version.

Corresponding author

Correspondence to Rouhallah Sharifi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2269 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S., Sharifi, R. & Habibi, A. Simultaneous removal of aliphatic and aromatic crude oil hydrocarbons by Pantoea agglomerans isolated from petroleum-contaminated soil in the west of Iran. Arch Microbiol 206, 98 (2024). https://doi.org/10.1007/s00203-023-03819-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03819-y

Keywords

Navigation