Log in

Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  • Abers MS, Lionakis MS, Kontoyiannis DP (2019) Checkpoint inhibition and infectious diseases: a good thing? Trends Mol Med 25(12):1080–1093

    Article  CAS  PubMed  Google Scholar 

  • Adams AB, Ford ML, Larsen CP (2016) Costimulation blockade in autoimmunity and transplantation: the CD28 pathway. J Immunol 197(6):2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Aghbash PS et al (2021a) SARS-CoV-2 infection: the role of PD-1/PD-L1 and CTLA-4 axis. Life Sci 270:119124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghbash PS et al (2021b) The role of Th17 cells in viral infections. Int Immunopharmacol 91:107331

    Article  CAS  PubMed  Google Scholar 

  • Aghbash PS et al (2022) The effect of Wnt/beta-catenin signaling on PD-1/PDL-1 axis in HPV-related cervical cancer. Oncol Res 30(3):99–116

    Article  PubMed  Google Scholar 

  • Aghbash PS et al (2022) Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 12:904790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal A et al (2012) Increased IL-21 secretion by aged CD4+T cells is associated with prolonged STAT-4 activation and CMV seropositivity. Aging (albany NY) 4(9):648–659

    Article  CAS  PubMed  Google Scholar 

  • Alegre ML et al (1996) Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol 157(11):4762–4770

    Article  CAS  PubMed  Google Scholar 

  • Almaghrabi RS, Omrani AS, Memish ZA (2017) Cytomegalovirus infection in lung transplant recipients. Expert Rev Respir Med 11(5):377–383

    CAS  PubMed  Google Scholar 

  • Amir AL et al (2010) Allo-HLA reactivity of virus-specific memory T cells is common. Blood J Am Soc Hematol 115(15):3146–3157

    CAS  Google Scholar 

  • Appleman LJ, Boussiotis VA (2003) T cell anergy and costimulation. Immunol Rev 192:161–180

    Article  CAS  PubMed  Google Scholar 

  • Attanasio J, Wherry EJ (2016) Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity 44(5):1052–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam A et al (2001) Prenatal diagnosis of congenital cytomegalovirus infection. Obstet Gynecol 97(3):443–448

    CAS  PubMed  Google Scholar 

  • Azuma H et al (1996) Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection. Proc Natl Acad Sci U S A 93(22):12439–12444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi S, Yuan R, Engleman EG (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 16:223–249

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18(1):767–811

    Article  CAS  PubMed  Google Scholar 

  • Barker CF, Markmann JF (2013) Historical overview of transplantation. Cold Spring Harb Perspect Med 3(4):a014977

    Article  PubMed  PubMed Central  Google Scholar 

  • Beam E et al (2016) Cytomegalovirus disease is associated with higher all-cause mortality after lung transplantation despite extended antiviral prophylaxis. Clin Transplant 30(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Beck K et al (2003) Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape. Eur J Immunol 33(6):1528–1538

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Reddehase MJ, Lemmermann NA (2022) Mast cells meet cytomegalovirus: a new example of protective mast cell involvement in an infectious disease. Cells 11(9):1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  • Benoit M et al (2008) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38(4):1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Berry GJ, Morris RE (2016) Immunosuppressive Drugs in solid organ transplantation. Pathol Transpl: A Pract Diagn Approach 53.

  • Bessa V et al (2019) Expression pattern of co-inhibitory molecules on CMV-specific T-cells in lung transplant patients. Clin Immunol 208:108258

    Article  CAS  PubMed  Google Scholar 

  • Bestard O et al (2013) Pretransplant immediately early-1-specific T cell responses provide protection for CMV infection after kidney transplantation. Am J Transplant 13(7):1793–1805

    Article  CAS  PubMed  Google Scholar 

  • Bezinover D, Saner F (2019) Organ transplantation in the modern era. Springer, pp 1–4

    Google Scholar 

  • Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320(26):1731–1735

    Article  CAS  PubMed  Google Scholar 

  • Blair PA et al (2010) CD19+ CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140

    Article  CAS  PubMed  Google Scholar 

  • Blyth E et al (2016) CMV-specific immune reconstitution following allogeneic stem cell transplantation. Virulence 7(8):967–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boise LH et al (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Bour-Jordan H, Bluestone JA (2009) Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 229(1):41–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brom VC et al (2022) The role of immune checkpoint molecules on macrophages in cancer, infection, and autoimmune pathologies. Front Immunol 13:837645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese LH et al (2020) Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. J Autoimmun 115:102546

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Gaspar M et al (2008) Location and time-dependent control of rejection by regulatory T cells culminates in a failure to generate memory T cells. J Immunol 180(10):6640–6648

    Article  CAS  PubMed  Google Scholar 

  • Cella M et al (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew GM et al (2016) TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog 12(1):e1005349

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiopris G et al (2020) Congenital cytomegalovirus infection: update on diagnosis and treatment. Microorganisms 8(10):1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou S (2020) Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antiviral Res 176:104711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JB et al (2003) Incomplete activation of CD4 T cells by antigen-presenting transitional immature B cells: implications for peripheral B and T cell responsiveness. J Immunol 171(4):1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Ciurea SO et al (2017) Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130(16):1857–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courivaud C et al (2012) Cytomegalovirus exposure, immune exhaustion and cancer occurrence in renal transplant recipients. Transpl Int 9(25):948–955

    Article  Google Scholar 

  • Crawford A et al (2014) Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40(2):289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crough T, Khanna R (2009) Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 22(1):76–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Baetselier P et al (2001) Alternative versus classical macrophage activation during experimental African trypanosomosis. Int J Parasitol 31(5–6):575–587

    Article  CAS  PubMed  Google Scholar 

  • De Sousa Linhares A et al (2018) Not all immune checkpoints are created equal. Front Immunol 9:1909

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Bello A, Kamar N, Treiner E (2020) T cell reconstitution after lymphocyte depletion features a different pattern of inhibitory receptor expression in ABO- versus HLA-incompatible kidney transplant recipients. Clin Exp Immunol 200(1):89–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Bello A et al (2022) The CD226/TIGIT axis is involved in T cell hypo-responsiveness appearance in long-term kidney transplant recipients. Sci Rep 12(1):11821

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirks J et al (2013) Blockade of programmed death receptor-1 signaling restores expression of mostly proinflammatory cytokines in anergic cytomegalovirus-specific T cells. Transpl Infect Dis 15(1):79–89

    Article  CAS  PubMed  Google Scholar 

  • Dornieden T et al (2019) Enhancement of cytomegalovirus-specific cytokine production after modulation of the costimulation in kidney transplant patients. J Immunol Res 2019:3926175

    Article  PubMed  PubMed Central  Google Scholar 

  • Drozd B et al (2019) Cutaneous cytomegalovirus manifestations, diagnosis, and treatment: a review. Dermatol Online J 25(1):13030/qt84f936cp

    Article  PubMed  Google Scholar 

  • El Haddad L et al (2019) The ability of a cytomegalovirus ELISPOT assay to predict outcome of low-level CMV reactivation in hematopoietic cell transplant recipients. J Infect Dis 219(6):898–907

    Article  PubMed  Google Scholar 

  • Emery V (1998) Relative importance of cytomegalovirus load as a risk factor for cytomegalovirus disease in the immunocompromised host. CMV-related immunopathology. Karger Publishers, pp 288–301

    Google Scholar 

  • Farzi R et al (2022) The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 233:153848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix NJ, Allen PM (2007) Specificity of T-cell alloreactivity. Nat Rev Immunol 7(12):942–953

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Moreno R, Torre-Cisneros J, Cantisán S (2021) Human cytomegalovirus (HCMV)-encoded microRNAs: potential biomarkers and clinical applications. RNA Biol 18(12):2194–2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira VH, Kumar D, Humar A (2019) Deep Profiling of the CD8+ T-cell compartment identifies activated cell subsets and multifunctional responses associated with control of cytomegalovirus viremia. Transplantation 103(3):613–621

    Article  CAS  PubMed  Google Scholar 

  • Fleming BD, Mosser DM (2011) Regulatory macrophages: setting the threshold for therapy. Eur J Immunol 41(9):2498–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortun J et al (2010) Immunosuppressive therapy and infection after kidney transplantation. Transpl Infect Dis 12(5):397–405

    Article  CAS  PubMed  Google Scholar 

  • Francis RS et al (2011) Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur J Immunol 41(3):726–738

    Article  CAS  PubMed  Google Scholar 

  • Freer G, Quaranta P, Pistello M (2016) Evaluation of T cell immunity against human cytomegalovirus: impact on patient management and risk assessment of vertical transmission. J Immunol Res 2016:9384813

    Article  PubMed  PubMed Central  Google Scholar 

  • Frentsch M et al (2005) Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med 11(10):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Gabardi S, van Gelder T (2017) Causes and consequences of the worldwide belatacept shortage. Transplantation 101(7):1520–1521

    Article  PubMed  Google Scholar 

  • Gandolfo MT et al (2009) Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76(7):717–729

    Article  CAS  PubMed  Google Scholar 

  • Gérard L et al (1997) Cytomegalovirus (CMV) viremia and the CD4+ lymphocyte count as predictors of CMV disease in patients infected with human immunodeficiency virus. Clin Infect Dis 24(5):836–840

    Article  PubMed  Google Scholar 

  • Gillespie GMA et al (2000) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J Virol 74(17):8140–8150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gliga S et al (2018) T-Track-CMV and QuantiFERON-CMV assays for prediction of protection from CMV reactivation in kidney transplant recipients. J Clin Virol 105:91–96

    Article  PubMed  Google Scholar 

  • Grohmann U et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Gross JA, John TS, Allison JP (1990) The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J Immunol 144(8):3201–3210

    Article  CAS  PubMed  Google Scholar 

  • Gueguen J et al (2019) CMV disease and colitis in a kidney transplanted patient under pembrolizumab. Eur J Cancer 109:172–174

    Article  PubMed  Google Scholar 

  • Guo F et al (2017) Human regulatory macrophages are potent in suppression of the xenoimmune response via indoleamine-2, 3-dioxygenase-involved mechanism (s). Xenotransplantation 24(5):e12326

    Article  Google Scholar 

  • Haidar G, Singh N (2017) Viral infections in solid organ transplant recipients: novel updates and a review of the classics. Curr Opin Infect Dis 30(6):579–588

    Article  PubMed  Google Scholar 

  • Haidar G, Boeckh M, Singh N (2020) Cytomegalovirus infection in solid organ and hematopoietic cell transplantation: state of the evidence. J Infect Dis 221(Suppl_1):S23–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halloran PF et al (2015) Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J Am Soc Nephrol 26(7):1711–1720

    Article  CAS  PubMed  Google Scholar 

  • Harjunpää H, Guillerey C (2020) TIGIT as an emerging immune checkpoint. Clin Exp Immunol 200(2):108–119

    Article  PubMed  Google Scholar 

  • Harper K et al (1991) CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol 147(3):1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Hemmat N et al (2018) Viral infection and atherosclerosis. Eur J Clin Microbiol Infect Dis 37(12):2225–2233

    Article  PubMed  Google Scholar 

  • Hester J et al (2011) Th17 cells in alemtuzumab-treated patients. The effect of long-term maintenance immunosuppressive therapy. Transplantation 91(7):744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippen KL et al (2016) Preclinical testing of antihuman CD28 fab’ antibody in a novel nonhuman primate small animal rodent model of xenogenic graft-versus-host disease. Transplantation 100(12):2630–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hock B et al (1994) Characterization of CMRF-44, a novel monoclonal antibody to an activation antigen expressed by the allostimulatory cells within peripheral blood, including dendritic cells. Immunology 83(4):573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hock B et al (1999) Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. Tissue Antigens 53(4):320–334

    Article  CAS  PubMed  Google Scholar 

  • Holtappels R et al (2022) Memory CD8 T Cells protect against cytomegalovirus disease by formation of nodular inflammatory foci preventing intra-tissue virus spread. Viruses 14(6):1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes BL, Gyamfi-Bannerman C, S.f.M.-F. Medicine (2016) Diagnosis and antenatal management of congenital cytomegalovirus infection. Am J Obstet Gynecol 214(6):5–11

    Article  Google Scholar 

  • Hutchinson JA et al (2011) Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 187(5):2072–2078

    Article  CAS  PubMed  Google Scholar 

  • Ishida JH et al (2017) Phase 2 randomized, double-blind, placebo-controlled trial of RG7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob Agents Chemother 61(2):e01794-e1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarque M et al (2020) Cellular immunity to predict the risk of cytomegalovirus infection in kidney transplantation: a prospective, interventional, multicenter clinical trial. Clin Infect Dis 71(9):2375–2385

    CAS  PubMed  Google Scholar 

  • ** W, Dong C (2013) IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2(9):e60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Hegde N (2002) Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Viral Proteins Counteracting Host Defenses 269:101–115

    Article  CAS  Google Scholar 

  • Johnston RJ et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937

    Article  CAS  PubMed  Google Scholar 

  • Joller N et al (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendal AR et al (2011) Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med 208(10):2043–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairallah C et al (2013) Implication of gamma delta T cells in the immune response against murine CMV. In: Front. Immunol. Conference abstract: 15th international congress of immunology (ICI). https://doi.org/10.3389/conf.fimmu

  • Kim S-H (2020) Interferon-γ release assay for cytomegalovirus (IGRA-CMV) for risk stratification of posttransplant CMV infection: is it time to apply IGRA-CMV in routine clinical practice? Oxford University Press, US, pp 2386–2388

    Google Scholar 

  • Kim C et al (2008) Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc Natl Acad Sci 105(16):6150–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-H et al (2017) Clinical applications of interferon-γ releasing assays for cytomegalovirus to differentiate cytomegalovirus disease from bystander activation: a pilot proof-of-concept study. Korean J Intern Med 32(5):900–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T et al (2020) Diagnostic usefulness of the cytomegalovirus (CMV)-specific T cell-based assay for predicting CMV infection after kidney transplant. Korean J Intern Med 35(2):438

    Article  PubMed  Google Scholar 

  • Kingsley CI et al (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168(3):1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Kornete M, Piccirillo CA (2012) Functional crosstalk between dendritic cells and Foxp3+ regulatory T cells in the maintenance of immune tolerance. Front Immunol 3:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotton CN et al (2013) Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 96(4):333–360

    Article  CAS  PubMed  Google Scholar 

  • Kotton CN et al (2018) The third international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 102(6):900–931

    Article  PubMed  Google Scholar 

  • Kwon DS et al (2012) CD4+ CD25+ regulatory T cells impair HIV-1-specific CD4 T cell responses by upregulating interleukin-10 production in monocytes. J Virol 86(12):6586–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzarotto T et al (2008) New advances in the diagnosis of congenital cytomegalovirus infection. J Clin Virol 41(3):192–197

    Article  CAS  PubMed  Google Scholar 

  • Le Roy E et al (2002) Infection of APC by human cytomegalovirus controlled through recognition of endogenous nuclear immediate early protein 1 by specific CD4+ T lymphocytes. J Immunol 169(3):1293–1301

    Article  PubMed  Google Scholar 

  • Le Texier L et al (2011) Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am J Transpl 11(3):429–438

    Article  Google Scholar 

  • Lee H, Oh EJ (2022) Laboratory diagnostic testing for cytomegalovirus infection in solid organ transplant patients. Korean J Transplant 36(1):15–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J-S et al (2021) Fluorometric viral miRNA nanosensor for diagnosis of productive (Lytic) human cytomegalovirus infection in living cells. ACS Sens 6(3):815–822

    Article  CAS  PubMed  Google Scholar 

  • Levitsky J et al (2013) Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans. Transplantation 96(8):689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XC, Rothstein DM, Sayegh MH (2009) Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 229(1):271–293

    Article  CAS  PubMed  Google Scholar 

  • Limaye AP, Babu TM, Boeckh M (2020) Progress and challenges in the prevention, diagnosis, and management of cytomegalovirus infection in transplantation. Clin Microbiol Rev 34(1):e00043-e119

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D et al (2014) 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses. J Exp Med 211(2):297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljungman P et al (2017) Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis 64(1):87–91

    Article  PubMed  Google Scholar 

  • Lu L et al (1997) Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J Immunol 158(12):5676–5684

    Article  CAS  PubMed  Google Scholar 

  • Lucca LE et al (2019) TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 4(3):e124427

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahalingam S, Lidbury BA (2002) Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-κB) complexes by antibody-dependent enhancement of macrophage infection by ross river virus. Proc Natl Acad Sci 99(21):13819–13824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahnke K et al (2007) Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci 46(3):159–167

    Article  CAS  PubMed  Google Scholar 

  • Manohar S et al (2020) Systematic review of the safety of immune checkpoint inhibitors among kidney transplant patients. Kidney Int Rep 5(2):149–158

    Article  PubMed  Google Scholar 

  • Marsico C, Kimberlin DW (2017) Congenital Cytomegalovirus infection: advances and challenges in diagnosis, prevention and treatment. Ital J Pediatr 43(1):1–8

    Article  Google Scholar 

  • Mattei F, Schiavoni G, Tough DF (2010) Regulation of immune cell homeostasis by type I interferons. Cytokine Growth Factor Rev 21(4):227–236

    Article  CAS  PubMed  Google Scholar 

  • Mauri C, Blair PA (2010) Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol 6(11):636–643

    Article  CAS  PubMed  Google Scholar 

  • Mazzarella L et al (2019) The evolving landscape of “next-generation” immune checkpoint inhibitors: a review. Eur J Cancer 117:14–31

    Article  CAS  PubMed  Google Scholar 

  • McGrath MM, Najafian N (2012) The role of coinhibitory signaling pathways in transplantation and tolerance. Front Immunol 3:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead KI et al (2005) Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 174(8):4803–4811

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL et al (2003) Cutting edge: induced indoleamine 2, 3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171(4):1652–1655

    Article  CAS  PubMed  Google Scholar 

  • Miao K, Zhang L (2021) Application of immune checkpoint inhibitors in solid organ transplantation recipients: a systematic review. Interdiscip Sci: Comput Life Sci 13(4):801–814

    Article  CAS  Google Scholar 

  • Miles SA et al (2005) A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med 201(5):747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau A et al (2017) Tolerogenic dendritic cell therapy in organ transplantation. Transpl Int 30(8):754–764

    Article  CAS  PubMed  Google Scholar 

  • Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621

    Article  CAS  PubMed  Google Scholar 

  • Munro S et al (2005) Diagnosis of and screening for cytomegalovirus infection in pregnant women. J Clin Microbiol 43(9):4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing ZW et al (2016) Congenital cytomegalovirus infection in pregnancy: a review of prevalence, clinical features, diagnosis and prevention. Aust N Z J Obstet Gynaecol 56(1):9–18

    Article  PubMed  Google Scholar 

  • Naniche D, Oldstone M (2000) Generalized immunosuppression: how viruses undermine the immune response. Cell Mol Life Sci CMLS 57:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Newell KA et al (2010) Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Investig 120(6):1836–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Z, Liu K, **ong H (2021) Roles of BTLA in immunity and immune disorders. Front Immunol 12:654960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oja AE et al (2017) The transcription factor hobit identifies human cytotoxic CD4(+) T Cells. Front Immunol 8:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouellette CP (2022) Adoptive immunotherapy for prophylaxis and treatment of cytomegalovirus infection. Viruses 14(11):2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallier A et al (2010) Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int 78(5):503–513

    Article  CAS  PubMed  Google Scholar 

  • Pan L et al (2022) whole genome profiling of lung microbiome in solid organ transplant recipients reveals virus involved microecology may worsen prognosis. Front Cell Infect Microbiol 12:863399

    Article  PubMed  PubMed Central  Google Scholar 

  • Papp G et al (2017) Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun Rev 16(5):435–444

    Article  CAS  PubMed  Google Scholar 

  • Parry HM et al (2021) PD-1 is imprinted on cytomegalovirus-specific CD4+ T cells and attenuates Th1 cytokine production whilst maintaining cytotoxicity. PLoS Pathog 17(3):e1009349–e1009349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauken KE, Wherry EJ (2014) TIGIT and CD226: tip** the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26(6):785–787

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Lai M-M, Zheng X-Q (2019) Differential circRNA expression profiles in latent human cytomegalovirus infection and validation using clinical samples. Physiol Genom 51:51–58

    Article  Google Scholar 

  • Poirier N et al (2015) FR104, an antagonist anti-CD28 monovalent fab’ antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft. Am J Transplant 15(1):88–100

    Article  CAS  PubMed  Google Scholar 

  • Poirier N et al (2016) First-in-human study in healthy subjects with FR104, a pegylated monoclonal antibody fragment antagonist of CD28. J Immunol 197(12):4593–4602

    Article  CAS  PubMed  Google Scholar 

  • Preillon J et al (2021) Restoration of T-cell effector function, depletion of tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies. Mol Cancer Ther 20(1):121–131

    Article  CAS  PubMed  Google Scholar 

  • Priyadharshini B, Greiner DL, Brehm MA (2012) T-cell activation and transplantation tolerance. Transpl Rev 26(3):212–222

    Article  Google Scholar 

  • Rafferty H et al (2022) Are the patterns of cytomegalovirus viral load seen after solid organ transplantation affected by circadian rhythm? J Infect Dis 226(2):357–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlinson WD et al (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 6(17):e177–e188

    Article  Google Scholar 

  • Razonable RR, Humar A (2019) Cytomegalovirus in solid organ transplant recipients-guidelines of the American society of transplantation infectious diseases community of practice. Clin Transplant 33(9):e13512

    Article  PubMed  Google Scholar 

  • Riella LV et al (2012) Deleterious effect of CTLA4-Ig on a treg-dependent transplant model. Am J Transpl 12(4):846–855

    Article  CAS  Google Scholar 

  • Riquelme P et al (2013) IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther 21(2):409–422

    Article  CAS  PubMed  Google Scholar 

  • Riquelme P et al (2018) TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 9(1):1–18

    Article  CAS  Google Scholar 

  • Rosa CL et al (2008) Programmed death—1 expression in liver transplant recipients as a prognostic indicator of cytomegalovirus disease. J Infect Dis 197(1):25–33

    Article  PubMed  Google Scholar 

  • Ross SA, Boppana SB (2005) Congenital cytomegalovirus infection outcome and diagnosis. Seminars pediatric infectious diseases. Elsevier

    Google Scholar 

  • Ross AS et al (2011) Overview of the diagnosis of cytomegalovirus infection. Infect Disord-Drug Targets (formerly Current Drug Targets-Infectious Disorders) 11(5):466–474

    CAS  Google Scholar 

  • Sagoo P et al (2010) Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Investig 120(6):1848–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Fueyo A, Markmann JF (2016) Immune exhaustion and transplantation. Am J Transplant 16(7):1953–1957

    Article  CAS  PubMed  Google Scholar 

  • Savidis A et al (2020) P95 Costimulatory molecules on CMV-specific T-cells in CMV IgG+ patients with systemic lupus erythematosus. 2020, Archives of disease in childhood.

  • Schildknecht A et al (2010) FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci 107(1):199–203

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EM et al (2009) Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 182(1):274–282

    Article  CAS  PubMed  Google Scholar 

  • Schultz DA, Chandler S (1991) Cytomegalovirus testing: antibody determinations and virus cultures with recommendations for use. J Clin Lab Anal 5(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  CAS  PubMed  Google Scholar 

  • Sester U et al (2008) PD-1 expression and IL-2 loss of cytomegalovirus-specific T cells correlates with viremia and reversible functional anergy. Am J Transpl 8(7):1486–1497

    Article  CAS  Google Scholar 

  • Shabir S et al (2016) Cytomegalovirus-associated CD4(+) CD28(null) cells in NKG2D-Dependent glomerular endothelial Injury and kidney allograft dysfunction. Am J Transpl 16(4):1113–1128

    Article  CAS  Google Scholar 

  • Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M (2018) T cell exhaustion implications during transplantation. Immunol Lett 202:52–58

    Article  CAS  PubMed  Google Scholar 

  • Shiri Aghbash P et al (2022) Cluster of differentiation frequency on antigen presenting-cells: the next step to cervical cancer prognosis? Int Immunopharmacol 108:108896

    Article  CAS  PubMed  Google Scholar 

  • Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl FR et al (2015) Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 8(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Sun M et al (2018) SP732 increased expression of the coinhibitors PD-1 and BTLA on CMV-specific T-cells is associated with symptomatic CMV infection in renal transplant patients. Nephrol Dial Transpl 33(Suppl_1):i594–i594

    Article  Google Scholar 

  • Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227(1):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan P et al (1993) Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 177(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Tanimura K, Yamada H (2018) Potential biomarkers for predicting congenital cytomegalovirus infection. Int J Mol Sci 19(12):3760

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorp EB, Stehlik C, Ansari MJ (2015) T-cell exhaustion in allograft rejection and tolerance. Curr Opin Organ Transplant 20(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zajac AJ (2016) IL-21 and T cell differentiation: consider the context. Trends Immunol 37(8):557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovar-Salazar A, Weinberg A (2020) Understanding the mechanism of action of cytomegalovirus-induced regulatory T cells. Virology 547:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tu W et al (2008) Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood J Am Soc Hematol 112(6):2554–2562

    CAS  Google Scholar 

  • Valujskikh A, Baldwin WMI, Fairchild RL (2010) Recent progress and new perspectives in studying T cell responses to allografts. Am J Transpl 10(5):1117–1125

    Article  CAS  Google Scholar 

  • van de Berg PJ et al (2010) Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J Infect Dis 202(5):690–699

    Article  PubMed  Google Scholar 

  • van den Heuvel H et al (2019) Infection with a virus generates a polyclonal immune response with broad alloreactive potential. Hum Immunol 80(2):97–102

    Article  PubMed  Google Scholar 

  • van Kooten C et al (2011) Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 91(1):2–7

    Article  PubMed  Google Scholar 

  • Van Laecke S et al (2018) Cardiovascular disease after transplantation: an emerging role of the immune system. Transpl Int 31(7):689–699

    Article  PubMed  Google Scholar 

  • Venner JM et al (2015) The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transpl 15(5):1336–1348

    Article  CAS  Google Scholar 

  • Vescovini R et al (2016) Impact of persistent cytomegalovirus infection on dynamic changes in human immune system profile. PLoS ONE 11(3):e0151965

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira Braga FA et al (2015) Blimp-1 homolog hobit identifies effector-type lymphocytes in humans. Eur J Immunol 45(10):2945–2958

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F et al (2010) A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transpl 10(3):535–546

    Article  CAS  Google Scholar 

  • Vincenti F et al (2012) Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transpl 12(1):210–217

    Article  CAS  Google Scholar 

  • Waldmann H et al (2014) Harnessing FOXP3+ regulatory T cells for transplantation tolerance. J Clin Invest 124(4):1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills MR et al (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70(11):7569–7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witczak BJ et al (2006) Routine coronary angiography in diabetic nephropathy patients before transplantation. Am J Transpl 6(10):2403–2408

    Article  CAS  Google Scholar 

  • Wood KJ, Bushell A, Hester J (2012) Regulatory immune cells in transplantation. Nat Rev Immunol 12(6):417–430

    Article  CAS  PubMed  Google Scholar 

  • Ying H et al (2010) Cutting edge: CTLA-4–B7 interaction suppresses Th17 cell differentiation. J Immunol 185(3):1375–1378

    Article  CAS  PubMed  Google Scholar 

  • Yu X et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Su C, Luo X (2019) Impact of infection on transplantation tolerance. Immunol Rev 292(1):243–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T et al (2011) Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am J Transpl 11(8):1599–1609

    Article  CAS  Google Scholar 

  • Zhang J et al (2019) BTLA suppress acute rejection via regulating TCR downstream signals and cytokines production in kidney transplantation and prolonged allografts survival. Sci Rep 9(1):1–14

    Google Scholar 

  • Zheng J et al (2010) CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4+ regulatory T cells. Cell Mol Immunol 7(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zieliński M et al (2016) CD28 positive, cytomegalovirus specific cytotoxic T lymphocytes as a novel biomarker associated with cytomegalovirus viremia in kidney allorecipients. J Clin Virol 83:17–25

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Funding

No funding was used in this study.

Author information

Authors and Affiliations

Authors

Contributions

HBB: Conceived the idea for this manuscript, edited subsequent drafts; PSA: Literature search, Design of the figure, Manuscript preparation; RR: Literature search, Manuscript preparation, Design of the tables; VA: Literature search, Manuscript preparation; JSN: Review the manuscript.

All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Bannazadeh Baghi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbash, P.S., Rasizadeh, R., Arefi, V. et al. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 205, 280 (2023). https://doi.org/10.1007/s00203-023-03623-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03623-8

Keywords

Navigation