Log in

The association of microvascular disease and endothelial dysfunction with vertebral trabecular bone mineral density

The MESA study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Retinopathy and albuminuria are associated with hip fracture risk. We investigated whether these disorders and endothelial dysfunction (which underlies microvascular diseases) were associated with low trabecular bone density. No significant associations were found, suggesting that microvascular diseases are not related to fracture risk through low trabecular bone density.

Purpose

Microvascular diseases of the eye, kidney, and brain are associated with endothelial dysfunction and increased hip fracture risk. To explore the basis for higher hip fracture risk, we comprehensively examined whether markers of microvascular disease and/or endothelial dysfunction are related to trabecular bone mineral density (BMD), a proximate risk factor for osteoporotic fractures.

Methods

Among 6814 participants in the Multi-Ethnic Study of Atherosclerosis study (MESA), we derived thoracic vertebral trabecular BMD from computed tomography of the chest and measured urine albumin to creatinine ratios (UACR), retinal arteriolar and venular widths, flow mediated dilation (FMD) of the brachial artery after 5 min of ischemia; and levels of five soluble endothelial adhesion markers (ICAM-1, VCAM-1, L-selectin, P-selectin, and E-selectin). Linear regression models were used to examine the association of trabecular BMD with markers of microvascular disease and with markers of endothelial dysfunction.

Results

We observed no significant associations of UACR, retinal arteriolar or venular widths, or FMD with BMD. We also observed no statistically significant association of spine trabecular BMD with levels of endothelial adhesion markers. Men and women had largely similar results.

Conclusion

We conclude that there is little evidence to connect thoracic spine trabecular BMD to microvascular disorders or to endothelial dysfunction among multi-ethnic middle-aged and older adults. Other factors beyond trabecular BMD (e.g., bone quality or predisposition to falling) may be responsible for the associations of microvascular disease with osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Ronald Klein, Barbara EK Klein (2018) Chapter 21. Epidemiology of ocular functions and disease in persons with diabetes. Diabetes in America, 3rd Edition. National Institutes of Diabetes and Digestive and Kidney Diseases

  2. Biffi E, Turple Z, Chung J, Biffi A (2022) Retinal biomarkers of cerebral small vessel disease: a systematic review. PLoS One. 17(4): e0266974. https://doi.org/10.1371/journal.pone.0266974. eCollection 2022

  3. Li W, Schram MT, Sörensen BM, van Agtmaal MJM, Berendschot TTJM, Webers CAB, Jansen JFA, Backes WH, Gronenschild EHBM, Schalkwijk CG, Stehouwer CDA, Houben AJHM (2020) Microvascular phenoty** in the Maastricht Study: design and main findings, 2010–2018. Am J Epidemiol 189(9):873–884. https://doi.org/10.1093/aje/kwaa023

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nowroozpoor A, Gutterman D, Safdar B (2021) Is microvascular dysfunction a systemic disorder with common biomarkers found in the heart, brain, and kidneys? – a sco** review. Microvasc Res 134:104123. https://doi.org/10.1016/j.mvr.2020.104123

    Article  CAS  PubMed  Google Scholar 

  5. Barzilay JI, Bůžková P, Chen Z, de Boer IH, Carbone L, Rassouli NN, Fink HA, Robbins JA (2013) Albuminuria is associated with hip fracture risk in older adults. The Cardiovascular Health Study. Osteoporos Int 24:2993–3000. https://doi.org/10.1007/s00198-013-2389-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bůžková P, Barzilay JI, Fink HA, Robbins JA, Cauley JA, Fitzpatrick AL (2014) The ratio of urine albumin to creatinine attenuates the association of dementia with hip fracture risk. J Clin Endocrinol Metabol 99:4116–4123. https://doi.org/10.1210/jc.2014-2409

    Article  CAS  Google Scholar 

  7. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Blue Mountains Eye Study. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care 24(7):1198–1203. https://doi.org/10.2337/diacare.24.7.1198

    Article  CAS  PubMed  Google Scholar 

  8. Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23:1334–1342. https://doi.org/10.1359/jbmr.080323

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prisby RD (2017) Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol 235(3):R77–R100. https://doi.org/10.1530/JOE-16-0666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Griffith JF, Yeung DK, Tsang PH, Choi KC, Kwok TC, Ahuja AT, Leung KS, Leung PC (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075. https://doi.org/10.1359/jbmr.080233

    Article  PubMed  Google Scholar 

  11. Laroche M, Ludot I, Thiechart M, Arlet J, Pieraggi M, Chiron P, Moulinier L, Cantagrel A, Puget J, Utheza G, Mazieres B (1995) Study of the intraosseous vessels of the femoral head in patients with fractures of the femoral neck or osteoarthritis of the hip. Osteoporos Int 5:213–217. https://doi.org/10.1007/BF01774009

    Article  CAS  PubMed  Google Scholar 

  12. Sanada M, Taguchi A, Higashi Y, Tsuda M, Kodama I, Yoshizumi M, Ohama K (2004) Forearm endothelial function and bone mineral loss in postmenopausal women. Atherosclerosis 176(2):387–392. https://doi.org/10.1016/j.atherosclerosis.2004.05.021

    Article  CAS  PubMed  Google Scholar 

  13. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20(3):291–302. https://doi.org/10.1007/s10456-017-9541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chia PY, Teo A, Yeo TW (2020) Overview of the assessment of endothelial function in humans. Front Med (Lausanne) 7:542567. https://doi.org/10.3389/fmed.2020.542567

    Article  PubMed  Google Scholar 

  15. Vieira de Oliveira G, Soares RN, Volino-Souza M, Murias JM, Alvares TS (2019) The association between near-infrared spectroscopy assessment of microvascular reactivity and flow-mediated dilation is disrupted in individuals at high risk for cardiovascular disease. Microcirculation 26(7):e12556. https://doi.org/10.1111/micc.12556

    Article  PubMed  Google Scholar 

  16. Gimbrone MA Jr, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D (2021) Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 9(7):781. https://doi.org/10.3390/biomedicines9070781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Szklo M, Tracy RP (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881. https://doi.org/10.1093/aje/kwf113

    Article  PubMed  Google Scholar 

  19. van Gennip ACE, Sedaghat S, Carnethon MR, Allen NB, Klein BEK, Cotch MF, Chirinos DA, Stehouwer CDA, van Sloten TT (2022) Retinal microvascular caliber and incident depressive symptoms: the multi-ethnic study of atherosclerosis. Am J Epidemiol 191(5):843–855. https://doi.org/10.1093/aje/kwab255

    Article  PubMed  Google Scholar 

  20. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 106(12):2269–2280. https://doi.org/10.1016/s0161-6420(99)90525-0

    Article  CAS  PubMed  Google Scholar 

  21. Polak JF, Ouyang P, Vaidya D (2019) Total brachial artery reactivity and first time incident coronary heart disease events in a longitudinal cohort study: the multi-ethnic study of atherosclerosis. PLoS ONE 14(4):e0211726. https://doi.org/10.1371/journal.pone.0211726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen TT, Amirul Islam FM, Farouque HMO, Klein R, Klein BEK, Cotch MF, Herrington DM, Wong TY (2010) Retinal vascular caliber and brachial flow-mediated dilation: the multi-ethnic study of atherosclerosis. Stroke 41:1343–1348. https://doi.org/10.1161/STROKEAHA.110.581017

    Article  PubMed  PubMed Central  Google Scholar 

  23. Price DT, Loscalzo J (1999) Cellular adhesion molecules and atherogenesis. Am J Med 107:85–97. https://doi.org/10.1016/s0002-9343(99)00153-9

    Article  CAS  PubMed  Google Scholar 

  24. Budoff MJ, Khairallah W, Li D, Gao YL, Ismaeel H, Flores F, Child J, Carson S, Mao SS (2012) Trabecular bone mineral density measurement using thoracic and lumbar quantitative computed tomography. Acad Radiol 19(2):179–183. https://doi.org/10.1016/j.acra.2011.10.006

    Article  PubMed  Google Scholar 

  25. Li D, Mao SS, Budoff MJ (2024) Trabecular bone mineral density as measured by thoracic vertebrae predicts incident hip and vertebral fractures: the multi-ethnic study of atherosclerosis. Osteoporos Int 35(6):1061–1068. https://doi.org/10.1007/s00198-024-07040-5

    Article  CAS  PubMed  Google Scholar 

  26. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM (2009) Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120(6):502–509. https://doi.org/10.1161/CIRCULATIONAHA.109.864801

    Article  PubMed  PubMed Central  Google Scholar 

  27. R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Accessed 23 June 2023

  28. Jørgensen L, Jenssen T, Ahmed L, Bjørnerem A, Joakimsen R, Jacobsen BK (2007) Albuminuria and risk of nonvertebral fractures. Arch Intern Med 167(13):1379–1385. https://doi.org/10.1001/archinte.167.13.1379

    Article  PubMed  Google Scholar 

  29. Oumer KS, Liu Y, Charkos TG, Yang S (2022) Association between urine albumin to creatinine ratio and bone mineral density: a cross-sectional study. Ir J Med Sci 191(1):427–432. https://doi.org/10.1007/s11845-021-02551-0

    Article  CAS  PubMed  Google Scholar 

  30. Barzilay JI, Fitzpatrick AL, Luchsinger J, Yasar S, Bernick C, Jenny NS, Kuller LH (2008) Albuminuria and dementia: a community study. Am J Kid Dis 52:216–226. https://doi.org/10.1053/j.ajkd.2007.12.044

    Article  PubMed  Google Scholar 

  31. Buzkova P, Barzilay JI, Fink HA, Robbins JA, Cauley JA, Ix JH, Mukamal KJ (2019) Higher ACR and lower eGFR are potential risk factors for the decline of physical performance in the elderly. The Cardiovascular Health Study. Clin Kidney J 12(6):788–794. https://doi.org/10.1093/ckj/sfz024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein BE, Klein R, Lee KE, Cruickshanks KJ (1998) Performance-based and self-assessed measures of visual function as related to history of falls, hip fractures, and measured gait time. Beaver Dam Eye Study Ophthalmol 105(1):160–164. https://doi.org/10.1016/s0161-6420(98)91911-x

    Article  CAS  Google Scholar 

  33. Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84:45–55. https://doi.org/10.1007/s00223-008-9195-5

    Article  CAS  PubMed  Google Scholar 

  34. Piras A, Perazzolo M, ZaccariaScalinci S, Raffi M (2022) The effect of diabetic retinopathy on standing posture during optic flow stimulation. Gait Posture 95:242–248. https://doi.org/10.1016/j.gaitpost.2020.10.020

    Article  PubMed  Google Scholar 

  35. Kong L, Yang X (2020) Study of intercellular adhesion molecule-1 (ICAM-1) in bone homeostasis. Curr Drug Targets 21(4):328–337. https://doi.org/10.2174/1389450120666190927122553

    Article  CAS  PubMed  Google Scholar 

  36. Bourdillon MT, Gaye B, Song RJ, Vasan RS, Xanthakis V (2022) Notable paradoxical phenomena in associations between cardiovascular health score, subclinical and clinical cardiovascular disease in the community: the Framingham Heart Study. PLoS One 17(5):e0267267. https://doi.org/10.1371/journal.pone.0267267. eCollection 2022

  37. Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP (2017) Bone disease in diabetes: another manifestation of microvascular disease. Lancet Diabetes Endocrinol 5:827–838. https://doi.org/10.1016/S2213-8587(17)30134-1

    Article  PubMed  Google Scholar 

  38. Spiegl UJ, Scheyerer MJ, Osterhoff G, Grüninger S, Schnake KJ (2022) Osteoporotic mid-thoracic vertebral body fractures: what are the differences compared to fractures of the lumbar spine? -a systematic review. Eur J Trauma Emerg Surg 48(3):1639–1647. https://doi.org/10.1007/s00068-021-01792-z

    Article  PubMed  Google Scholar 

  39. Michalski AS, Besler BA, Burt LA, Boyd SK (2021) Opportunistic CT screening predicts individuals at risk of major osteoporotic fracture. Osteoporos Int 32:1639–1649. https://doi.org/10.1007/s00198-021-05863-0

    Article  CAS  PubMed  Google Scholar 

  40. Cranney A, Welch V, Wells G, Adachi J, Shea B, Simon L, Tugwell P (2001) Discrimination of changes in osteoporosis outcomes. J Rheum 28(2):413–421

    CAS  PubMed  Google Scholar 

  41. **ao CL, Liu LL, Tang W, Liu WY, Wu LY, Zhao K (2023) Reduction of the trans-cortical vessel was associated with bone loss, another underlying mechanism of osteoporosis. Microvasc Res 18(152):104650. https://doi.org/10.1016/j.mvr.2023.104650

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Funding

This research was supported by R01HL146666 and 2R42AR070713 and MESA was supported by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N9 2020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by grants UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing Translational Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua I. Barzilay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzilay, J.I., Buzkova, P., Bielinski, S.J. et al. The association of microvascular disease and endothelial dysfunction with vertebral trabecular bone mineral density. Osteoporos Int (2024). https://doi.org/10.1007/s00198-024-07152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00198-024-07152-y

Keywords

Navigation