Log in

Mixed uremic osteodystrophy: an ill-described common bone pathology in patients with chronic kidney disease

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Renal osteodystrophy (ROD) starts early and progresses with further loss of kidney function in patients with chronic kidney disease (CKD). There are four distinct types of ROD based on undecalcified bone biopsy results. Adynamic bone disease and osteomalacia are the predominant forms of low bone turnover, while hyperparathyroid bone disease and mixed uremic osteodystrophy (MUO) are typically associated with high bone turnover. MUO is a prevalent but poorly described pathology that demonstrates evidence of osteomalacia on top of the high bone formation/resorption. The prevalence of MUO ranges from 5 to 63% among different studies. The pathogenesis of MUO is multi-factorial. Altered phosphate homeostasis, hypocalcemia, vitamin D deficiency, increased FGF-23, interleukins 1 and 6, TNF-α, amyloid, and heavy metal accumulation are the main inducers of MUO. The clinical findings of MUO are usually non-specific. The use of non-invasive testing such as bone turnover markers and imaging techniques might help to suspect MUO. However, it is usually impossible to precisely diagnose this condition without performing bone biopsy. The principal management of MUO is to control the maladaptive hyperparathyroidism along with correcting any nutritional mineral deficiencies that may induce mineralization defect. MUO is a common but still poorly understood bone pathology category; it demonstrates the complexity and difficulty in understanding ROD. A large prospective bone biopsy-based studies are needed for better identification as proper diagnosis and management would improve the outcome of patients with MUO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Evenepoel P, Behets GJS, Laurent MR, D'Haese PC (2017) Update on the role of bone biopsy in the management of patients with CKD-MBD. J Nephrol 30(5):645–652. https://doi.org/10.1007/s40620-017-0424-8

    Article  CAS  PubMed  Google Scholar 

  2. Ferreira AC, Cohen-Solal M, D'Haese PC, Ferreira A (2021) The role of bone biopsy in the management of CKD-MBD. Calcif Tissue Int 108(4):528–538. https://doi.org/10.1007/s00223-021-00838-z

    Article  CAS  PubMed  Google Scholar 

  3. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int 69(11):1945–1953. https://doi.org/10.1038/sj.ki.5000414

    Article  CAS  PubMed  Google Scholar 

  4. Fusaro M, Re Sarto GV, Gallieni M, Cosmai L, Messa P, Rossini M, Chiodini I, Plebani M, Evenepoel P, Harvey N, Ferrari S, Cannata-Andia J, Trombetti A, Brandi ML, Ketteler M, Nickolas TL, Cunningham J, Salam S, Della Rocca C et al (2022) Time for revival of bone biopsy with histomorphometric analysis in chronic kidney disease (CKD): moving from skepticism to pragmatism. Nutrients 14(9). https://doi.org/10.3390/nu14091742

  5. Barreto FC, Costa C, Reis LMD, Custódio MR (2018) Bone biopsy in nephrology practice. Braz J Nephrol 40(4):366–374. https://doi.org/10.1590/2175-8239-jbn-2017-0012

    Article  Google Scholar 

  6. Dalle Carbonare L, Valenti MT, Giannini S, Gallieni M, Stefani F, Ciresa R, Politi C, Fusaro M (2021) Bone biopsy for histomorphometry in chronic kidney disease (CKD): state-of-the-art and new perspectives. J Clin Med 10(19). https://doi.org/10.3390/jcm10194617

  7. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res Off J Am Soc Bone Miner Res 28(1):2–17. https://doi.org/10.1002/jbmr.1805

    Article  Google Scholar 

  8. Malluche H, Faugere MC (1990) Renal bone disease 1990: an unmet challenge for the nephrologist. Kidney Int 38(2):193–211. https://doi.org/10.1038/ki.1990.187

    Article  CAS  PubMed  Google Scholar 

  9. Barreto FC, Barreto DV, Moyses RM, Neves CL, Jorgetti V, Draibe SA, Canziani ME, Carvalho AB (2006) Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem. Kidney Int 69(10):1852–1857. https://doi.org/10.1038/sj.ki.5000311

    Article  CAS  PubMed  Google Scholar 

  10. London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, de Vernejoul MC (2004) Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol:JASN 15(7):1943–1951. https://doi.org/10.1097/01.asn.0000129337.50739.48

    Article  PubMed  Google Scholar 

  11. Dos Reis LM, Batalha JR, Muñoz DR, Borelli A, Correa PH, Carvalho AB, Jorgetti V (2007) Brazilian normal static bone histomorphometry: effects of age, sex, and race. J Bone Miner Metab 25(6):400–406. https://doi.org/10.1007/s00774-007-0778-4

    Article  PubMed  Google Scholar 

  12. Rehman MT, Hoyland JA, Denton J, Freemont AJ (1994) Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47(6):529–534. https://doi.org/10.1136/jcp.47.6.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clarke BL, Ebeling PR, Jones JD, Wahner HW, O'Fallon WM, Riggs BL, Fitzpatrick LA (1996) Changes in quantitative bone histomorphometry in aging healthy men. J Clin Endocrinol Metab 81(6):2264–2270. https://doi.org/10.1210/jcem.81.6.8964862

    Article  CAS  PubMed  Google Scholar 

  14. KDIGO (2009) Clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 113:S1–S130. https://doi.org/10.1038/ki.2009.188

    Article  Google Scholar 

  15. Keronen S, Martola L, Finne P, Burton IS, Kauppila L, Kröger H, Larsson TE, Honkanen E (2016) Bone histomorphometry and indicators of bone and mineral metabolism in wait-listed dialysis patients. Clin Nephrol 85(3):127–134. https://doi.org/10.5414/cn108709

    Article  CAS  PubMed  Google Scholar 

  16. Bembem K, Singh T, Singh NP, Saxena A, Jain SL (2017) Bone histo-morphology in chronic kidney disease mineral bone disorder. Indian J Hematol Blood Transfus 33(4):603–610. https://doi.org/10.1007/s12288-016-0754-z

    Article  PubMed  Google Scholar 

  17. Novel-Catin E, Pelletier S, Fouque D, Roux JP, Chapurlat R, D'Haese P, Behets G, Evenepoel P, Nickolas TL, Lafage-Proust MH (2020) Quantitative histomorphometric analysis of halved iliac crest bone biopsies yield comparable ROD diagnosis as full 7.5mm wide samples. Bone 138:115460. https://doi.org/10.1016/j.bone.2020.115460

    Article  PubMed  Google Scholar 

  18. Laowalert S, Khotavivattana T, Wattanachanya L, Luangjarmekorn P, Udomkarnjananun S, Katavetin P, Eiam-Ong S, Praditpornsilpa K, Susantitaphong P (2020) Bone turnover markers predict type of bone histomorphometry and bone mineral density in Asian chronic haemodialysis patients. Nephrology (Carlton) 25(2):163–171. https://doi.org/10.1111/nep.13593

    Article  CAS  PubMed  Google Scholar 

  19. Lavigne F, Desbiens LC, Garneau G, Côté F, Mac-Way F (2021) Iliac crest bone biopsy by interventional radiologists to improve access to bone biopsy in chronic kidney disease populations: technical note and a case series. J Nephrol 34(3):901–906. https://doi.org/10.1007/s40620-020-00798-x

    Article  PubMed  Google Scholar 

  20. Carbonara CEM, Roza NAV, Reis LMD, Carvalho AB, Jorgetti V, Oliveira RB (2023) Overview of renal osteodystrophy in Brazil: a cross-sectional study. Braz J Nephrol. https://doi.org/10.1590/2175-8239-JBN-2022-0146en

  21. Chavassieux P, Chapurlat R (2022) Interest of bone histomorphometry in bone pathophysiology investigation: foundation, present, and future. Front Endocrinol 13:907914. https://doi.org/10.3389/fendo.2022.907914

    Article  Google Scholar 

  22. Slatopolsky E, Gonzalez E, Martin K (2003) Pathogenesis and treatment of renal osteodystrophy. Blood Purif 21(4-5):318–326. https://doi.org/10.1159/000072552

    Article  PubMed  Google Scholar 

  23. Ho LT, Sprague SM (2002) Renal osteodystrophy in chronic renal failure. Semin Nephrol 22(6):488–493. https://doi.org/10.1053/snep.2002.35965

    Article  PubMed  Google Scholar 

  24. Legg V (2005) Complications of chronic kidney disease: a close look at renal osteodystrophy, nutritional disturbances, and inflammation. Am J Nurs 105(6):40–49. https://doi.org/10.1097/00000446-200506000-00024

    Article  PubMed  Google Scholar 

  25. Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res Off J Am Soc Bone Miner Res 17(12):2094–2105. https://doi.org/10.1359/jbmr.2002.17.12.2094

    Article  CAS  Google Scholar 

  26. Brandenburg V, Ketteler M (2022) Vitamin D and secondary hyperparathyroidism in chronic kidney disease: a critical appraisal of the past, present, and the future. Nutrients 14(15). https://doi.org/10.3390/nu14153009

  27. Lima F, El-Husseini A, Monier-Faugere MC, David V, Mawad H, Quarles D, Malluche HH (2014) FGF-23 serum levels and bone histomorphometric results in adult patients with chronic kidney disease on dialysis. Clin Nephrol 82(5):287–295. https://doi.org/10.5414/cn108407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hruska KA, Teitelbaum SL (1995) Renal osteodystrophy. N Engl J Med 333(3):166–174. https://doi.org/10.1056/nejm199507203330307

    Article  CAS  PubMed  Google Scholar 

  29. Carbonara CEM, Roza NAV, Quadros KRS, França RA, Esteves ABA, Pavan CR, Barreto J, Dos Reis LM, Jorgetti V, Sposito AC, Oliveira RB (2023) Effect of aluminum accumulation on bone and cardiovascular risk in the current era. PloS one 18(4):e0284123. https://doi.org/10.1371/journal.bone.0284123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uchida H, Kurata Y, Hiratsuka H, Umemura T (2010) The effects of a vitamin D-deficient diet on chronic cadmium exposure in rats. Toxicol Pathol 38(5):730–737. https://doi.org/10.1177/0192623310374328

    Article  CAS  PubMed  Google Scholar 

  31. Legan M, Benedik M, Kovač D, Cör A (2005) Mixed uremic osteodystrophy – a predominant form of renal bone disease in Slovenia. Ther Apher Dial 9(1):80–80

    Article  Google Scholar 

  32. Schonland S, Hansmann J, Mechtersheimer G, Goldschmidt H, Ho A, Hegenbart U (2008) Bone involvement in patients with systemic AL amyloidosis mimics lytic myeloma bone disease. Haematologica 93(6):955–956. https://doi.org/10.3324/haematol.12497

    Article  PubMed  Google Scholar 

  33. Malluche HH, Faugere M-C (1986) Atlas of mineralized bone histology, vol 136, Karger Basel

  34. Fukumoto S, Ozono K, Michigami T, Minagawa M, Okazaki R, Sugimoto T, Takeuchi Y, Matsumoto T (2015) Pathogenesis and diagnostic criteria for rickets and osteomalacia--proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab 33(5):467–473. https://doi.org/10.1007/s00774-015-0698-7

    Article  PubMed  Google Scholar 

  35. Zhang S, Sun L, Zhang J, Liu S, Han J, Liu Y (2020) Adverse impact of heavy metals on bone cells and bone metabolism dependently and independently through anemia. Advan Sci 7(19):2000383

    Article  CAS  Google Scholar 

  36. Lehmann G, Ott U, Stein G, Steiner T, Wolf G (2007) Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc 39(10):3153–3158. https://doi.org/10.1016/j.transproceed.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  37. Chaer J, Reis LMD, Jorgetti V (2023) The role of the osteocytes on bone remodeling and mineralization: a bone biopsy-based study comparing mixed uremic osteodystrophy and osteitis fibrosa. Unpublished data

    Google Scholar 

  38. Drüeke TB, Massy ZA (2016) Changing bone patterns with progression of chronic kidney disease. Kidney Int 89(2):289–302. https://doi.org/10.1016/j.kint.2015.12.004

    Article  PubMed  Google Scholar 

  39. Behets GJ, Spasovski G, Sterling LR, Goodman WG, Spiegel DM, De Broe ME, D'Haese PC (2015) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87(4):846–856. https://doi.org/10.1038/ki.2014.349

    Article  CAS  PubMed  Google Scholar 

  40. Bellorin-Font E, Rojas E, Martin KJ (2022) Bone disease in chronic kidney disease and kidney transplant. Nutrients 15(1). https://doi.org/10.3390/nu15010167

  41. Alexander AJ, Jahangir D, Lazarus M (2017) Sprague SM Imaging in chronic kidney disease-metabolic bone disease. In: Seminars in dialysis, vol 4. Wiley Online Library, pp 361–368

    Google Scholar 

  42. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4):775–787

    Article  PubMed  Google Scholar 

  43. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie L-G, Kremer R, Erlandson MC (2013) High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 11:136–146

    Article  PubMed  PubMed Central  Google Scholar 

  44. Misiorowski W, Czajka-Oraniec I, Kochman M, Zgliczyński W, Bilezikian JP (2017) Osteitis fibrosa cystica—a forgotten radiological feature of primary hyperparathyroidism. Endocrine 58:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frame B, Parfitt AM (1978) Osteomalacia: current concepts. Ann Intern Med 89(6):966–982

    Article  CAS  PubMed  Google Scholar 

  46. Hodler J, Kubik-Huch RA, von Schulthess GK (2021) Musculoskeletal diseases 2021-2024. Diagnostic imaging

  47. Al-Beyatti Y, Siddique M, Frost M, Fogelman I, Blake G (2012) Precision of 18 F-fluoride PET skeletal kinetic studies in the assessment of bone metabolism. Osteoporos Int 23:2535–2541

    Article  CAS  PubMed  Google Scholar 

  48. Frost ML, Compston JE, Goldsmith D, Moore AE, Blake GM, Siddique M, Skingle L, Fogelman I (2013) 18 F-fluoride positron emission tomography measurements of regional bone formation in hemodialysis patients with suspected adynamic bone disease. Calcif Tissue Int 93:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Even-Sapir E, Mishani E, Flusser G, Metser U (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. In: Seminars in nuclear medicine, vol 6. Elsevier, pp 462–469

    Google Scholar 

  50. Aaltonen L, Koivuviita N, Seppänen M, Tong X, Kröger H, Löyttyniemi E, Metsärinne K (2020) Correlation between 18F-sodium fluoride positron emission tomography and bone histomorphometry in dialysis patients. Bone 134:115267

    Article  CAS  PubMed  Google Scholar 

  51. Santos MFP, Hernández MJ, de Oliveira IB, Siqueira FR, Dominguez WV, Dos Reis LM, Carvalho AB, Moysés RMA, Jorgetti V (2019) Comparison of clinical, biochemical and histomorphometric analysis of bone biopsies in dialysis patients with and without fractures. J Bone Miner Metab 37(1):125–133. https://doi.org/10.1007/s00774-018-0902-7

    Article  CAS  PubMed  Google Scholar 

  52. Araújo SM, Ambrosoni P, Lobão RR, Caorsi H, Moysés RM, Barreto FC, Olaizola I, Cruz EA, Petraglia A, Dos Reis LM, Duarte ME, Jorgetti V, Carvalho AB (2003) The renal osteodystrophy pattern in Brazil and Uruguay: an overview. Kidney Int Suppl 85:S54–S56. https://doi.org/10.1046/j.1523-1755.63.s85.13.x

    Article  Google Scholar 

  53. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A (2000) Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13(6):437–443

    CAS  PubMed  Google Scholar 

  54. Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere MC, El-Husseini A (2021) Bone quality in CKD patients: current concepts and future directions - part I. Kidney Dis (Basel) 7(4):268–277. https://doi.org/10.1159/000515534

    Article  PubMed  Google Scholar 

  55. Haarhaus M, Evenepoel P (2021) Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment. Kidney Int 100(3):546–558. https://doi.org/10.1016/j.kint.2021.04.043

    Article  CAS  PubMed  Google Scholar 

  56. West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res Off J Am Soc Bone Miner Res 30(5):913–919. https://doi.org/10.1002/jbmr.2406

    Article  Google Scholar 

  57. DeVita MV, Rasenas LL, Bansal M, Gleim GW, Zabetakis PM, Gardenswartz MH, Michelis MF (1992) Assessment of renal osteodystrophy in hemodialysis patients. Medicine 71(5):284–290. https://doi.org/10.1097/00005792-199209000-00003

    Article  CAS  PubMed  Google Scholar 

  58. Schober HC, Han ZH, Foldes AJ, Shih MS, Rao DS, Balena R, Parfitt AM (1998) Mineralized bone loss at different sites in dialysis patients: implications for prevention. J Am Soc Nephrol 9(7):1225–1233. https://doi.org/10.1681/asn.v971225

    Article  CAS  PubMed  Google Scholar 

  59. Boling EP, Primavera C, Friedman G, King M, Bosserman L, Schulz EE, Goodman WG (1993) Non-invasive measurements of bone mass in adult renal osteodystrophy. Bone 14(3):409–413. https://doi.org/10.1016/8756-3282(93)90172-7

    Article  CAS  PubMed  Google Scholar 

  60. K/DOQI (2003) Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42(4 Suppl 3):S1–S201

    Google Scholar 

  61. Fletcher S, Jones RG, Rayner HC, Harnden P, Hordon LD, Aaron JE, Oldroyd B, Brownjohn AM, Turney JH, Smith MA (1997) Assessment of renal osteodystrophy in dialysis patients: use of bone alkaline phosphatase, bone mineral density and parathyroid ultrasound in comparison with bone histology. Nephron 75(4):412–419. https://doi.org/10.1159/000189578

    Article  CAS  PubMed  Google Scholar 

  62. Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19(2):213–216. https://doi.org/10.1681/asn.2007080854

    Article  CAS  PubMed  Google Scholar 

  63. Nagy E, Sobh MM, Abdalbary M, Elnagar S, Elrefaey R, Shabaka S, Elshabrawy N, Shemies R, Tawfik M, Santos CGS, Barreto FC, El-Husseini A (2022) Is adynamic bone always a disease? Lessons from patients with chronic kidney disease. J Clin Med 11(23). https://doi.org/10.3390/jcm11237130

  64. Barreto DV, Barreto FC, Carvalho AB, Cuppari L, Cendoroglo M, Draibe SA, Moyses RM, Neves KR, Jorgetti V, Blair A, Guiberteau R, Fernandes Canziani ME (2005) Coronary calcification in hemodialysis patients: the contribution of traditional and uremia-related risk factors. Kidney Int 67(4):1576–1582. https://doi.org/10.1111/j.1523-1755.2005.00239.x

    Article  PubMed  Google Scholar 

  65. Neto R, Pereira L, Magalhães J, Quelhas-Santos J, Frazão J (2021) Low bone turnover is associated with plain X-ray vascular calcification in predialysis patients. PloS one 16(10):e0258284. https://doi.org/10.1371/journal.pone.0258284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Asci G, Ok E, Savas R, Ozkahya M, Duman S, Toz H, Kayikcioglu M, Branscum AJ, Monier-Faugere MC, Herberth J, Malluche HH (2011) The link between bone and coronary calcifications in CKD-5 patients on haemodialysis. Nephrol Dial Transplant 26(3):1010–1015. https://doi.org/10.1093/ndt/gfq491

    Article  PubMed  Google Scholar 

  67. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36. https://doi.org/10.1016/j.kint.2017.04.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgement for ISN and USAID associations for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr El-Husseini.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhouli, E., Nagy, E., Santos, C.G.S. et al. Mixed uremic osteodystrophy: an ill-described common bone pathology in patients with chronic kidney disease. Osteoporos Int 34, 2003–2012 (2023). https://doi.org/10.1007/s00198-023-06886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06886-5

Keywords

Navigation