Log in

Family resemblance of bone turnover rate in mothers and daughters—the MODAM study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We studied bone turnover markers (BTM) and bone microarchitecture (using high-resolution peripheral quantitative computed tomography (HR-pQCT)) in 171 postmenopausal women and their 210 premenopausal daughters. BTM levels correlated positively between mothers and daughters. The mother-daughter pairs with high BTM levels had lower cortical density than those with low BTM levels.

Introduction

We assessed the correlation of serum bone turnover markers (BTM) between postmenopausal mothers and their premenopausal daughters as well as possible determinants of this association and its impact on resemblance of bone microarchitecture between mothers and their daughters.

Methods

Cross-sectional analysis was performed in 171 untreated postmenopausal mothers (54 sustained fragility fractures) and their 210 premenopausal daughters. Intact N-terminal propeptide of type I collagen (PINP) and β-isomerized C-terminal crosslinking telopeptide of type I collagen (CTX-I) were measured in the fasting status. Bone microarchitecture was assessed using HR-pQCT.

Results

After adjustment for age, weight, lifestyle factors, hormones, and mother’s fracture status, BTM levels correlated positively between mothers and daughters (Intraclass Correlation Coefficient = 0.22–0.27, p <0.005). Average BTM levels were ∼0.6 SD higher among daughters of mothers in the highest BTM quartile vs. the ones in the lowest BTM quartile. The variability of BTM levels explained ≤10 and ≤14 % of variability of bone microarchitecture in the daughters and mothers, respectively. Cortical density was lower by 2.3–2.9 % (0.6 SD, p <0.05 to <0.005) in the daughters from the mother-daughter pairs with high BTM levels (defined by generation-specific quartiles) than in the daughters from the pairs with low BTM levels. Corresponding differences for the mothers were 4.5–4.8 % (0.5 SD, p <0.05 to <0.01).

Conclusion

BTM levels correlated between postmenopausal mothers and their premenopausal daughters after adjustment for age, weight, mother’s fracture status, lifestyle, and hormonal factors. Family resemblance of BTM levels may contribute to family resemblance of some bone microarchitectural parameters, especially of cortical density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE et al (1995) Risk factors for hip fracture in white women. Study of osteoporotic fractures research group. N Engl J Med 332(12):767–773

    Article  CAS  PubMed  Google Scholar 

  2. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35(5):1029–1037

    Article  CAS  PubMed  Google Scholar 

  3. Cooper C (1993) The epidemiology of fragility fractures: is there a role for bone quality? Calcif Tissue Int 53(Suppl 1):S23–S26

    Article  PubMed  Google Scholar 

  4. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80(3):706–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6(6):561–567

    Article  CAS  PubMed  Google Scholar 

  6. Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA (1991) Genetic factors in bone turnover. J Clin Endocrinol Metab 72(4):808–813

    Article  CAS  PubMed  Google Scholar 

  7. Tokita A, Kelly PJ, Nguyen TV, Qi JC, Morrison NA, Risteli L et al (1994) Genetic influences on type I collagen synthesis and degradation: further evidence for genetic regulation of bone turnover. J Clin Endocrinol Metab 78(6):1461–1466

    CAS  PubMed  Google Scholar 

  8. Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD (1996) Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab 81(1):140–146

    CAS  PubMed  Google Scholar 

  9. Livshits G, Yakovenko C, Kobyliansky E (2000) Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am J Med Genet 94(4):324–331

    Article  CAS  PubMed  Google Scholar 

  10. Hansen MA, Hassager C, Jensen SB, Christiansen C (1992) Is heritability a risk factor for postmenopausal osteoporosis? J Bone Miner Res 7(9):1037–1043

    Article  CAS  PubMed  Google Scholar 

  11. Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV et al (2001) Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res 16(2):371–378

    Article  CAS  PubMed  Google Scholar 

  12. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15(8):1526–1536

    Article  CAS  PubMed  Google Scholar 

  13. Seibel MJ, Cosman F, Shen V, Gordon S, Dempster DW, Ratcliffe A et al (1993) Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and estrogen efficacy in postmenopausal osteoporosis. J Bone Miner Res 8(7):881–889

    Article  CAS  PubMed  Google Scholar 

  14. Harris M, Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Genetic and environmental correlations between bone formation and bone mineral density: a twin study. Bone 22(2):141–145

    Article  CAS  PubMed  Google Scholar 

  15. Bjornerem A, Ghasem-Zadeh A, Bui M, Wang X, Rantzau C, Nguyen TV et al (2011) Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: a twin study. Bone 49(6):1125–1130

    Article  PubMed  Google Scholar 

  16. Nagy H, Sornay-Rendu E, Boutroy S, Vilayphiou N, Szulc P, Chapurlat R (2013) Impaired trabecular and cortical microarchitecture in daughters of women with osteoporotic fracture: the MODAM study. Osteoporos Int 24(6):1881–1889

    Article  CAS  PubMed  Google Scholar 

  17. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12(4):683–690

    Article  CAS  PubMed  Google Scholar 

  18. Albrand G, Munoz F, Sornay-Rendu E, DuBoeuf F, Delmas PD (2003) Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: the OFELY study. Bone 32(1):78–85

    Article  CAS  PubMed  Google Scholar 

  19. Tremblay RR, Dube JY (1974) Plasma concentrations of free and non-TeBG bound testosterone in women on oral contraceptives. Contraception 10(6):599–605

    Article  CAS  PubMed  Google Scholar 

  20. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  21. Sode M, Burghardt AJ, Pialat JB, Link TM, Majumdar S (2011) Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 48(6):1291–1297

    Article  PubMed Central  PubMed  Google Scholar 

  22. Feller W (1968) An introduction to probability theory and its applications. 3rd edition. John Wiley & Sons, Inc, New York, p

    Google Scholar 

  23. Wagner H, Melhus H, Pedersen NL, Michaelsson K (2013) Genetic influence on bone phenotypes and body composition: a Swedish twin study. J Bone Miner Metab 31(6):681–689

    Article  PubMed  Google Scholar 

  24. Donescu OS, Battie MC, Kaprio J, Levalahti E, Risteli J, Eyre D et al (2007) Genetic and constitutional influences on bone turnover markers: a study of male twin pairs. Calcif Tissue Int 80(2):81–88

    Article  CAS  PubMed  Google Scholar 

  25. Nagy H, Feyt C, Chapurlat R, Szulc P (2013) Familial resemblance of bone turnover rate in men aged 40 and over-the MINOS study. J Bone Miner Metab 31(2):222–230

    Article  PubMed  Google Scholar 

  26. Brenn T (1997) Adult family members and their resemblance of coronary heart disease risk factors: the cardiovascular disease study in Finnmark. Eur J Epidemiol 13(6):623–630

    Article  CAS  PubMed  Google Scholar 

  27. den Hoed M, Brage S, Zhao JH, Westgate K, Nessa A, Ekelund U et al (2013) Heritability of objectively assessed daily physical activity and sedentary behavior. Am J Clin Nutr 98(5):1317–1325

    Article  Google Scholar 

  28. Neumark YD, Friedlander Y (1998) Familial resemblance of alcohol consumption levels in Jewish families. Alcohol Alcohol 33(5):509–518

    Article  CAS  PubMed  Google Scholar 

  29. Vink JM, Boomsma DI (2011) Interplay between heritability of smoking and environmental conditions. A Comparison Two Birth Cohorts BMC Public Health 11:316

    Article  Google Scholar 

  30. Hla MM, Davis JW, Ross PD, Yates AJ, Wasnich RD (2001) The relation between lifestyle factors and biochemical markers of bone turnover among early postmenopausal women. Calcif Tissue Int 68(5):291–296

    Article  CAS  PubMed  Google Scholar 

  31. Rapuri PB, Gallagher JC, Balhorn KE, Ryschon KL (2000) Smoking and bone metabolism in elderly women. Bone 27(3):429–436

    Article  CAS  PubMed  Google Scholar 

  32. Szulc P, Garnero P, Claustrat B, Marchand F, Duboeuf F, Delmas PD (2002) Increased bone resorption in moderate smokers with low body weight: the Minos study. J Clin Endocrinol Metab 87(2):666–674

    Article  CAS  PubMed  Google Scholar 

  33. Yamazaki S, Ichimura S, Iwamoto J, Takeda T, Toyama Y (2004) Effect of walking exercise on bone metabolism in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Metab 22(5):500–508

    Article  CAS  PubMed  Google Scholar 

  34. Shapses SA, Robins SP, Schwartz EI, Chowdhury H (1995) Short-term changes in calcium but not protein intake alter the rate of bone resorption in healthy subjects as assessed by urinary pyridinium crosslink excretion. J Nutr 125(11):2814–2821

    CAS  PubMed  Google Scholar 

  35. Runyan SM, Stadler DD, Bainbridge CN, Miller SC, Moyer-Mileur LJ (2003) Familial resemblance of bone mineralization, calcium intake, and physical activity in early-adolescent daughters, their mothers, and maternal grandmothers. J Am Diet Assoc 103(10):1320–1325

    Article  PubMed  Google Scholar 

  36. Stafleu A, Van Staveren WA, de Graaf C, Burema J, Hautvast JG (1994) Family resemblance in energy, fat, and cholesterol intake: a study among three generations of women. Prev Med 23(4):474–480

    Article  CAS  PubMed  Google Scholar 

  37. Vartiainen E, Laatikainen T, Peltonen M, Juolevi A, Mannisto S, Sundvall J et al (2010) Thirty-five-year trends in cardiovascular risk factors in Finland. Int J Epidemiol 39(2):504–518

    Article  PubMed  Google Scholar 

  38. Meikle AW, Stephenson RA, Lewis CM, Wiebke GA, Middleton RG (1997) Age, genetic, and nongenetic factors influencing variation in serum sex steroids and zonal volumes of the prostate and benign prostatic hyperplasia in twins. Prostate 33(2):105–111

    Article  CAS  PubMed  Google Scholar 

  39. Ring HZ, Lessov CN, Reed T, Marcus R, Holloway L, Swan GE et al (2005) Heritability of plasma sex hormones and hormone binding globulin in adult male twins. J Clin Endocrinol Metab 90(6):3653–3658

    Article  CAS  PubMed  Google Scholar 

  40. Koenis MM, Brouwer RM, van Baal GC, van Soelen IL, Peper JS, van Leeuwen M et al (2013) Longitudinal study of hormonal and physical development in young twins. J Clin Endocrinol Metab 98(3):E518–E527

    Article  CAS  PubMed  Google Scholar 

  41. Stone J, Folkerd E, Doody D, Schroen C, Treloar SA, Giles GG et al (2009) Familial correlations in postmenopausal serum concentrations of sex steroid hormones and other mitogens: a twins and sisters study. J Clin Endocrinol Metab 94(12):4793–4800

    Article  CAS  PubMed  Google Scholar 

  42. Varghese JS, Smith PL, Folkerd E, Brown J, Leyland J, Audley T et al (2012) The heritability of mammographic breast density and circulating sex-hormone levels: two independent breast cancer risk factors. Cancer Epidemiol Biomarkers Prev 21(12):2167–2175

    Article  CAS  PubMed  Google Scholar 

  43. Abrahamsen B, Hjelmborg JV, Kostenuik P, Stilgren LS, Kyvik K, Adamu S et al (2005) Circulating amounts of osteoprotegerin and RANK ligand: genetic influence and relationship with BMD assessed in female twins. Bone 36(4):727–735

    Article  CAS  PubMed  Google Scholar 

  44. Kwan JS, **ao S, Bow C, Cheung CL, Soong C, Lau KS et al (2011) Heritability of serum osteoprotegerin. Ann Hum Genet 75(5):584–588

    Article  CAS  PubMed  Google Scholar 

  45. Lam CS, Chen MH, Lacey SM, Yang Q, Sullivan LM, Xanthakis V et al (2010) Circulating insulin-like growth factor-1 and its binding protein-3: metabolic and genetic correlates in the community. Arterioscler Thromb Vasc Biol 30(7):1479–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sas AA, Jamshidi Y, Zheng D, Wu T, Korf J, Alizadeh BZ et al (2012) The age dependency of genetic and environmental influences on serum cytokine levels: a twin study. Cytokine 60(1):108–113

    Article  CAS  PubMed  Google Scholar 

  47. Khosla S, Melton LJ 3rd, Achenbach SJ, Oberg AL, Riggs BL (2006) Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 91(3):885–891

    Article  CAS  PubMed  Google Scholar 

  48. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK et al (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24(6):1033–1042

    Article  PubMed Central  PubMed  Google Scholar 

  49. Neu CM, Manz F, Rauch F, Merkel A, Schoenau E (2001) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28(2):227–232

    Article  CAS  PubMed  Google Scholar 

  50. Neu CM, Rauch F, Manz F, Schoenau E (2001) Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 12(7):538–547

    Article  CAS  PubMed  Google Scholar 

  51. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993

    PubMed Central  PubMed  Google Scholar 

  52. Fox J, Miller MA, Newman MK, Recker RR, Turner CH, Smith SY (2007) Effects of daily treatment with parathyroid hormone 1–84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone 41(3):321–330

    Article  CAS  PubMed  Google Scholar 

  53. Bui M, Bjornerem A, Ghasem-Zadeh A, Dite GS, Hopper JL, Seeman E (2013) Architecture of cortical bone determines in part its remodelling and structural decay. Bone 55(2):353–358

    Article  PubMed  Google Scholar 

  54. Paternoster L, Lorentzon M, Lehtimaki T, Eriksson J, Kahonen M, Raitakari O et al (2013) Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet 9(2):e1003247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21(1):124–131

    Article  PubMed Central  PubMed  Google Scholar 

  56. Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27(4):487–494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Bruno Claustrat for the measurements of sex steroid hormones. The authors also thank Olivier Borel and Cindy Bertholon for the laboratory analysis. Also, we thank Annick Bourgeaud, Sylviane Ailloud, and Yvonne Varillon for the excellent technical assistance.

Conflicts of interest

Hoda Nagy, Roland Chapurlat, Elisabeth Sornay-Rendu, Stéphanie Boutroy, and Pawel Szulc declare that they have no conflicts of interest.

Dr. Nagy’s efforts were supported by the fellowships from the Egyptian Government and from the Société Française de Rhumatologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Szulc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, H., Chapurlat, R., Sornay-Rendu, E. et al. Family resemblance of bone turnover rate in mothers and daughters—the MODAM study. Osteoporos Int 26, 921–930 (2015). https://doi.org/10.1007/s00198-014-2974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2974-0

Keywords

Navigation