Log in

Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Presently the relationship between CD28, biological marker of senescence, and ovariectomy is not well understood. We show that ovariectomy leads to CD28 loss on T cells and estrogen (E2) repletion and medicarpin (Med) inhibits this effect. We thus propose that Med/E2 prevents bone loss by delaying premature T cell senescence.

Introduction

Estrogen deficiency triggers reproductive aging by accelerating the amplification of TNF-α-producing T cells, thereby leading to bone loss. To date, no study has been carried out to explain the relationship between CD4+CD28null T cells and ovariectomy or osteoporosis. We aim to determine the effect of Ovx on CD28 expression on T cells and effects of E2 and medicarpin (a pterocarpan phytoalexin) with proven osteoprotective effect on altered T cell responses.

Methods

Adult, female Balb/c mice were taken for the study. The groups were: sham, Ovx, Ovx + Med or E2. Treatments were given daily by oral gavage. At autopsy bone marrow and spleen were flushed out and cells labelled with antibodies for FACS analysis. Serum was collected for ELISA.

Results

In Ovx mice, Med/E2 at their respective osteoprotective doses resulted in thymus involution and lowered Ovx-induced increase in serum TNF-α level and its mRNA levels in the BM T cells. Med/E2 reduced BM and spleen CD4+ T cell proliferation and prevented CD28 loss on CD4+ T cells. Further, Med abrogated TNF-α-induced loss of CD28 expression in the BM T cells.

Conclusions

To our knowledge this is the first report to determine the mechanism of CD28 loss on T cells as a result of ovariectomy. Our study demonstrates that Ovx leads to the generation of premature senescent CD4+CD28null T cells, an effect inhibited by E2 and Med. We propose that one of the mechanisms by which Med/E2 alleviates Ovx-induced bone loss is by delaying T cell senescence and enhancing CD28 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227

    Article  PubMed  CAS  Google Scholar 

  2. Weitzmann MN, Pacifici R (2007) T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci 1116:360–375

    Article  PubMed  CAS  Google Scholar 

  3. Rauner M, Sipos W, Pietschmann P (2007) Osteoimmunology. Int Arch Allergy Immunol 143:31–48

    Article  PubMed  Google Scholar 

  4. Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14

    Article  PubMed  Google Scholar 

  5. De Martinins M, Mengoli LP, Ginaldi L (2007) Osteoporosis—an immune mediated disease? Drug Discov Today Ther Strat 4:3–9

    Article  Google Scholar 

  6. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237

    Article  PubMed  CAS  Google Scholar 

  7. Weitzmann MN, Pacifici R (2005) The role of T lymphocytes in bone metabolism. Immunol Rev 208:154–168

    Article  PubMed  CAS  Google Scholar 

  8. Pacifici R (2007) T cells and post menopausal osteoporosis in murine models. Arthritis Res Ther 9:102

    Article  PubMed  Google Scholar 

  9. D'Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C et al (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100

    Article  PubMed  Google Scholar 

  10. Vallejo AN, Nestel AR, Schirmer M, Weyand CM, Goronzy JJ (1998) Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity. J Biol Chem 273:8119–8129

    Article  PubMed  CAS  Google Scholar 

  11. Vallejo AN, Weyand CM, Goronzy JJ (2004) T cell senescense: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med 10:119–124

    Article  PubMed  CAS  Google Scholar 

  12. Effros RB (1997) Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol 21:471–478

    Article  PubMed  CAS  Google Scholar 

  13. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ (1999) Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 162:6572–6579

    PubMed  CAS  Google Scholar 

  14. Vallejo AN, Bryl E, Klarskov K, Naylor S, Weyand CM, Goronzy JJ (2002) Molecular basis for the loss of CD28 expression in senescent T cells. J Biol Chem 277:46940–46949

    Article  PubMed  CAS  Google Scholar 

  15. Effros RB (1998) Replicative senescence: impact on T cell immunity in the elderly. Aging (Milano) 10:152

    CAS  Google Scholar 

  16. Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL et al (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29:601–609

    Article  PubMed  CAS  Google Scholar 

  17. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167:3231–3238

    PubMed  CAS  Google Scholar 

  18. Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ (2005) Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. Arthritis Rheum 52:2996–3003

    Article  PubMed  CAS  Google Scholar 

  19. Hertrampf T, Gruca MJ, Seibel J, Laudenbach U, Fritzemeier KH, Diel P (2007) The bone-protective effect of the phytoestrogen genistein is mediated via ER alpha-dependent mechanisms and strongly enhanced by physical activity. Bone 40:1529–1535

    Article  PubMed  CAS  Google Scholar 

  20. Bitto A, Polito F, Burnett B, Levy R, Di Stefano V, Armbruster MA et al (2009) Protective effect of genistein aglycone on the development of osteonecrosis of the femoral head and secondary osteoporosis induced by methylprednisolone in rats. J Endocrinol 201:321–328

    Article  PubMed  CAS  Google Scholar 

  21. Tyagi AM, Gautam AK, Kumar A, Srivastava K, Bhargavan B, Trivedi R et al (2010) Medicarpin inhibits osteoclastogenesis and has nonestrogenic bone conserving effect in ovariectomized mice. Mol Cell Endocrinol 325:101–109

    Article  PubMed  CAS  Google Scholar 

  22. Cenci S, Toraldo G, Weitzmann MN, Roggia C, Gao Y, Qian WP et al (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci U S A 100:10405–10410

    Article  PubMed  CAS  Google Scholar 

  23. Baker PJ, Dixon M, Evans RT, Dufour L, Johnson E, Roopenian DC (1999) CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 67:2804–2809

    PubMed  CAS  Google Scholar 

  24. Tarjanyi O, Boldizsar F, Nemeth P, Mikecz K, Glant TT (2009) Age-related changes in arthritis susceptibility and severity in a murine model of rheumatoid arthritis. Immun Ageing 6:8

    Article  PubMed  Google Scholar 

  25. Kozlowska E, Biernacka M, Ciechomska M, Drela N (2007) Age-related changes in the occurrence and characteristics of thymic CD4(+) CD25(+) T cells in mice. Immunology 122:445–453

    Article  PubMed  CAS  Google Scholar 

  26. Pandey R, Gautam AK, Biju B, Trivedi R, Swarnkar G, Nagar GK, Yadav DK, Kumar M, Rawat P, Manickavasagam L, Maurya R, Goel A, Jain GK, Chattopadhyay N, Singh D (2010) Total extract and standardized fraction from the stem bark of Butea monosperma have osteoprotective action: evidence for the non-estrogenic osteogenic effect of the standardized fraction. Menopause 17:602–610

    PubMed  Google Scholar 

  27. Miyamoto M, Matsushita Y, Kiyokawa A, Fukuda C, Iijima Y, Sugano M et al (1998) Prenylflavonoids: a new class of non-steroidal phytoestrogen (part 2). Estrogenic effects of 8-isopentenylnaringenin on bone metabolism. Planta Med 64:516–519

    Article  PubMed  CAS  Google Scholar 

  28. Bianchi F, Bernardini N, Marchetti P, Navalesi R, Giannarelli R, Dolfi A et al (1993) In vitro morpho-functional analysis of pancreatic islets isolated from the domestic chicken. Tissue Cell 25:817–824

    Article  PubMed  CAS  Google Scholar 

  29. Marchetti P, Giannarelli R, Villani G, Andreozzi M, Cruschelli L, Cosimi S et al (1994) Collagenase distension, two-step sequential filtration, and histopaque gradient purification for consistent isolation of pure pancreatic islets from the market-age (6-month-old) pig. Transplantation 57:1532–1535

    Article  PubMed  CAS  Google Scholar 

  30. Erlandsson MC, Gomori E, Taube M, Carlsten H (2000) Effects of raloxifene, a selective estrogen receptor modulator, on thymus, T cell reactivity, and inflammation in mice. Cell Immunol 205:103–109

    Article  PubMed  CAS  Google Scholar 

  31. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46:1550–1555

    Article  PubMed  CAS  Google Scholar 

  32. Grassi F, Tell G, Robbie-Ryan M, Gao Y, Terauchi M, Yang X et al (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci U S A 104:15087–15092

    Article  PubMed  CAS  Google Scholar 

  33. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98:13960–13965

    Article  PubMed  CAS  Google Scholar 

  34. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151

    Article  PubMed  Google Scholar 

  35. Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ (1996) Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol 36:269–277

    Article  PubMed  CAS  Google Scholar 

  36. Franco P, Marelli O, Lattuada D, Locatelli V, Cocchi D, Muller EE (1990) Influence of growth hormone on the immunosuppressive effect of prednisolone in mice. Acta Endocrinol (Copenh) 123:339–344

    CAS  Google Scholar 

  37. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA et al (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    PubMed  CAS  Google Scholar 

  38. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216

    Article  PubMed  CAS  Google Scholar 

  39. Rosen CJ, Usiskin K, Owens M, Barlascini CO, Belsky M, Adler RA (1990) T lymphocyte surface antigen markers in osteoporosis. J Bone Miner Res 5:851–855

    Article  PubMed  CAS  Google Scholar 

  40. Imanishi T, Hano T, Nishio I (2005) Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res 28:263–271

    Article  PubMed  CAS  Google Scholar 

  41. Ma S, Ochi H, Cui L, Zhang J, He W (2003) Hydrogen peroxide induced down-regulation of CD28 expression of Jurkat cells is associated with a change of site alpha-specific nuclear factor binding activity and the activation of caspase-3. Exp Gerontol 38:1109–1118

    Article  PubMed  CAS  Google Scholar 

  42. Somjen D, Katzburg S, Sharon O, Grafi-Cohen M, Knoll E, Stern N (2011) The effects of estrogen receptors alpha- and beta-specific agonists and antagonists on cell proliferation and energy metabolism in human bone cell line. J Cell Biochem 112(2):625–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Ministry of Health and Family Welfare and Department of Science and Technology, Government of India is acknowledged. AMT, AK, AR, and DKY are thankful to the Council of Scientific and Industrial Research for fellowship grants. We deeply acknowledge Mr Vishwakarma for hel** us in the FACS analysis. We pay our sincere thanks to Dr Naibedya Chattopadhyay for going through our manuscript and his valuable suggestions have helped us improve the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singh.

Additional information

Supporting grants are from the Ministry of Health and Family Welfare, Council of Scientific and Industrial Research, University Grants Commission, and the Government of India. CDRI communication manuscript number 158/2010/DS.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(PPT 34 kb)

Supplementary Fig. 1

(PPT 95 kb)

Supplementary Fig. 2

(PPT 118 kb)

Supplementary Fig. 3

(PPT 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, A.M., Srivastava, K., Kureel, J. et al. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss. Osteoporos Int 23, 1151–1161 (2012). https://doi.org/10.1007/s00198-011-1650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1650-x

Keywords

Navigation