Log in

Energetic materials in 3D: an in-depth exploration of additive manufacturing techniques

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Recently, because of the complex international situation and combat environment in the future, the development and application of new concept weapons have raised higher performance requirements for manufacturing technologies. However, at present, most weapons are still prepared using traditional charging methods (cast curing, pressure casting, and melt casting), which require subtractive manufacturing (SM) treatments before use. At present, the demand for weapon products is shifting towards reactive micro structures, high preparation efficiency, miniaturization, and controllable energy release. Besides, the modern “energetic-on-a-chip” trend was expected to reduce size and cost while increasing safety and maintaining performance. In this case, the traditional charging methods were not preferred due to their inherent drawbacks, such as being limited to the model, requiring long solvent drying times and recycling required and pores/cracks caused by the shrinkage of slurry, and so on. Therefore, it is necessary to innovate the processing and manufacturing technology of weapons and address the boundaries of existing charging methods, and this will enable the precise customization of high-quality energetic materials and avoid many defects. Additive manufacturing (AM), or 3D printing technology, has been booming recently. The application of additive manufacturing technology in the field of energetic materials (EMs) can promote the innovation of manufacturing technology for EMs and regulate the microstructure. Additionally, 3D printing technology can break through the existing design and development mode, expand explosive charging technology, and enable the distribution of different types of explosives and explosive density in a specific space area. Besides, 3D printing can fabricate “reactive microstructures” (RMS), which offer a deeper understanding of the EMs’ combustion and detonation phenomena at the micro- and nanoscale. Thus, the explosive/propellant grains with multiple damage modes can be designed and manufactured. This paper aims to summarize the current progress in the 3D printing of EMs, analyze the corresponding mechanisms, and provide guidance for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zong H, **ao L, Hao Y, Gao X, Wang W, Yang Y, Liu Q, Hao G, Jiang W The effect of micro-nano TKX-50 particle gradation on the properties of TNT based castable explosives. J Energ Mater. 2021:1–18. https://doi.org/10.1080/07370652.2021.1984613

  2. Zhang J-c, He K, Zhang D-w, Dong J-d, Li B, Liu Y-j, Gao G-l, Jiang Z-x (2022) Three-dimensional printing of energetic materials: a review. Energetic Mater Front 3(2):97–108. https://doi.org/10.1016/j.enmf.2022.04.001

    Article  Google Scholar 

  3. Sha M, Zhao H, Lei Y (2021) Updated insights into 3D Architecture electrodes for micropower sources. Adv Mater 33(45):2103304. https://doi.org/10.1002/adma.202103304

    Article  Google Scholar 

  4. Wang S, Yang L, Yan Z, Han J, Tong W (2023) Core–shell copper azide-based nanofiber films prepared by coaxial electrospinning for MEMS microinitiators. ACS Appl Nano Mater 6(13):12292–12299. https://doi.org/10.1021/acsanm.3c01971

    Article  Google Scholar 

  5. Muravyev NV, Monogarov KA, Schaller U, Fomenkov IV, Pivkina AN (2019) Progress in additive manufacturing of energetic materials: creating the reactive microstructures with high potential of applications. 44(8):941–969. https://doi.org/10.1002/prep.201900060

  6. Wang J, Li L, Wang P, Hang G, Zhou C (2021) Normally closed one-shot isolation valve for micropropulsion systems. Aerosp Sci Technol 110:106520. https://doi.org/10.1016/j.ast.2021.106520

    Article  Google Scholar 

  7. Chen N, He C, Pang S (2022) Additive manufacturing of energetic materials: tailoring energetic performance via printing. J Mater Sci Technol 127:29–47. https://doi.org/10.1016/j.jmst.2022.02.047

    Article  Google Scholar 

  8. Wang S-w, Song X-d, Wu Z-k, **ao L, Zhang G-p, Hu Y-b, Hao G-z, Jiang W, Zhao F-q (2021) Simulation of the plasticizing behavior of composite modified double-base (CMDB) propellant in grooved calendar based on adaptive grid technology. Def Technol 17(6):1954–1966. https://doi.org/10.1016/j.dt.2021.05.008

    Article  Google Scholar 

  9. Yang W, **ao X, Hu R, Yang JX, Zhao YH, Wang QL (2020) Developments of additive manufacture technology in propellants, explosives and pyrotechnics [J]. Chin J Explos Propellants 43:1–1. https://doi.org/10.14077/j.issn.1007-7812.201907033

  10. Lei X, Ga-zi H, Rui G, **ang K, Guang-pu Z, Yu-bing H, Hao Z, Su-wei W, Weil J (2022) Research status and prospect of additive manufacturing technology for energetic materials. Chin J Explosives Propellants 45(02):133–153. https://doi.org/10.14077/j.issn.1007-7812.202107011

    Article  Google Scholar 

  11. Wang S-W, Zhang Y-L, Wu C, **ao L, Lin G-M, Hu Y-B, Hao G-Z, Guo H, Zhang G-P, Jiang W (2023) Equal-material manufacturing of a thermoplastic melt-cast explosive using thermal-pressure coupling solidification treatment technology. ACS Omega 8(18):16251–16262. https://doi.org/10.1021/acsomega.3c00709

    Article  Google Scholar 

  12. **ng S, Qing N, Li D, Siyu W, Xuan L (2020) Application of additive manufacturing in energetic materials fields. New Technol New Process (12):26–30. https://doi.org/10.16635/j.cnki.1003-5311.2020.12.006

    Article  Google Scholar 

  13. Lei X, Huzeng Z, Rui G, Gazi H, Suwei W, Hao Z, Chao G, Zehao W, Wei J (2022) Development and application of an additive manufacturing device for melt-cast explosives based on fused deposition modeling technology. New Technol New Process (11):18–25. https://doi.org/10.16635/j.cnki.1003-5311.2022.11.017

    Article  Google Scholar 

  14. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B: Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  15. Roudný P, Syrový T (2022) Thermal conductive composites for FDM 3D printing: a review, opportunities and obstacles, future directions. J Manuf Process 83:667–677. https://doi.org/10.1016/j.jmapro.2022.09.026

    Article  Google Scholar 

  16. Sathies T, Senthil P, Anoop MS (2020) A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J 26(4):669–687. https://doi.org/10.1108/RPJ-08-2018-0199

    Article  Google Scholar 

  17. Liang Z, **g L, Zhe Z, Ning M, **aopeng S (2016) Additive manufacture technology and its research status and development in propellant and explosive industry. Explosive Mater 45(4):1–8. https://doi.org/10.3969/j.issn.1001-8352.2016.04.001

    Article  Google Scholar 

  18. Wang M, ** G, He W, Nan F (2022) 3D printing of gun propellants based on laminated object manufacturing. Mater Manuf Processes 37(11):1246–1256. https://doi.org/10.1080/10426914.2022.2072884

    Article  Google Scholar 

  19. Dick A, Bhandari B, Prakash S (2019) 3D printing of meat. Meat Sci 153:35–44. https://doi.org/10.1016/j.meatsci.2019.03.005

    Article  Google Scholar 

  20. Abdella S, Youssef SH, Afinjuomo F, Song Y, Fouladian P, Upton R, Garg S (2021) 3D printing of thermo-sensitive drugs. Pharmaceutics 13(9):1524

    Article  Google Scholar 

  21. Xu X, Seijo-Rabina A, Awad A, Rial C, Gaisford S, Basit AW, Goyanes A (2021) Smartphone-enabled 3D printing of medicines. Int J Pharm 609:121199. https://doi.org/10.1016/j.ijpharm.2021.121199

    Article  Google Scholar 

  22. Guo T, **a M, Yang W, Na Q, Zhang J, Yao W, Yang F, Luo Y (2022) Model of UV-curing thickness for new thiol-ene resin for additive manufacturing of energetic materials. Additive Manuf 54:102716. https://doi.org/10.1016/j.addma.2022.102716

    Article  Google Scholar 

  23. McClain MS, Afriat A, Rhoads JF, Gunduz IE, Son SF (2020) Development and characterization of a photopolymeric binder for additively manufactured composite solid propellant using vibration assisted printing. Propellants Explos Pyrotech 45(6):853–863. https://doi.org/10.1002/prep.201900387

    Article  Google Scholar 

  24. Zhu Z, Lin L, **angdong L, Huisheng Q (2015) Research on application of 3D printing technology of energetic materials. Ordnance Ind Autom 34(06):52–55

    Google Scholar 

  25. Zhong L, Zhou X, Huang X, Zheng D, Mao Y, Wang R, Wang D (2021) Combustion/decomposition characteristics of 3D-printed Al/CuO, Al/Fe2O3, Al/Bi2O3 and Al/PTFE hollow filaments. Mater Chem Phys 271:124874. https://doi.org/10.1016/j.matchemphys.2021.124874

    Article  Google Scholar 

  26. Mao Y, He Q, Wang J, Li Z, Yang Z, Nie F, Wang D (2021) Rational design of gradient structured fluorocarbon/Al composites towards tunable combustion performance. Combust Flame 230:111436. https://doi.org/10.1016/j.combustflame.2021.111436

    Article  Google Scholar 

  27. Xu C, An C, Li Q, Xu S, Wang S, Guo H, Wang J (2018) Preparation and performance of pentaerythrite tetranitrate-based composites by direct ink writing. Propellants Explos Pyrotech 43(11):1149–1156. https://doi.org/10.1002/prep.201800069

    Article  Google Scholar 

  28. Su-wei W, Lei X, Yu-bing H, Guang-pu Z, Hong-xu G, Feng-qi Z, Ga-zi H, Wei J (2021) A review on the preparation and application of nano-energetic materials. Chin J Explosives Propellants 44(06):705–734. https://doi.org/10.14077/j.issn.1007-7812.202112013

    Article  Google Scholar 

  29. Ravi P, Badgujar DM, Gore GM, Tewari SP, Sikder AK (2011) Review on melt cast explosives. Propellants Explos Pyrotech 36(5):393–403. https://doi.org/10.1002/prep.201100047

    Article  Google Scholar 

  30. Li HX, Wang JY, An CW (2014) Study on the rheological properties of CL-20/HTPB casting explosives. Cent Eur J Energ Mater 11(2):237–255

    MathSciNet  Google Scholar 

  31. Chen Y, Deng Y, Ren H, Jiao Q (2023) Additive manufacturing and performance tuning of functionally graded Al/AP with continuous change of content. J Mater Res Technol 24:6992–7003. https://doi.org/10.1016/j.jmrt.2023.05.014

    Article  Google Scholar 

  32. Zong H, Ren H, Ke X, Wang S, Hao G, Hu Y, Zhang G, **ao L, Jiang WJF (2023) Rheological and printability evaluation of melt-cast explosives for fused deposition modeling (FDM) 3D printing

  33. Zong H, Guo C, Wang Z, Guo R, Zhou H, Hao G, Ren H, **ao L, Jiang W (2022) Preparation of TNT/HMX-based melt-cast explosives with enhanced mechanical performance by fused deposition modeling (FDM). J Energ Mater 1–19. https://doi.org/10.1080/07370652.2022.2120569

  34. Jiba Z, Focke WW, Kalombo L, Madito MJ (2020) Coating processes towards selective laser sintering of energetic material composites. Def Technol 16(2):316–324. https://doi.org/10.1016/j.dt.2019.05.013

    Article  Google Scholar 

  35. Xu C, Zhao Z, Qiao Z, Li X, Yang H, Tang D-Y, Tang P, Yang G (2022) Reactivity of nanothermite-based micro energetic sticks prepared by direct ink writing. Chem Eng J 438:135608. https://doi.org/10.1016/j.cej.2022.135608

    Article  Google Scholar 

  36. Yang W, Hu R, Li M, Xu M, Yang Z, Meng L (2021) Thermal decomposition of photocurable energetic APNIMMO polymer. Propellants Explos Pyrotech 46(12):1767–1771. https://doi.org/10.1002/prep.202100239

    Article  Google Scholar 

  37. He Y, Guo X, Long Y, Huang G, Ren X, Xu C, An C (2020) Inkjet printing of GAP/NC/DNTF based microscale booster with high strength for PyroMEMS. 11(4):415

  38. Murray AK, Isik T, Ortalan V, Gunduz IE, Son SF, Chiu GT-C, Rhoads JF (2017) Two-component additive manufacturing of nanothermite structures via reactive inkjet printing. J Appl Phys 122(18):184901. https://doi.org/10.1063/1.4999800

    Article  Google Scholar 

  39. Thabet Y, Lunter D, Breitkreutz J (2018) Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm 546(1–2):180–187. https://doi.org/10.1016/j.ijpharm.2018.04.064

    Article  Google Scholar 

  40. Bernasconi R, Brovelli S, Viviani P, Soldo M, Giusti D, Magagnin L (2021) Piezoelectric drop-on-demand inkjet printing of high-viscosity inks. Adv Eng Mater 24(1):2100733. https://doi.org/10.1002/adem.202100733

    Article  Google Scholar 

  41. Li C, Liu S, **e Z, Ye B, An C, Wang J (2022) Design and fabrication of CL-20-based composites with an ordered close-packing structure by inkjet printing. Colloids Surf a 639:128331. https://doi.org/10.1016/j.colsurfa.2022.128331

    Article  Google Scholar 

  42. Chun-yan L, Chen-yang L, Min-jie L, Chong-wei A, Bao-yun Y, **g-yu W (2022) Review on ink-jet printing for ink droplet forming mechanism and its application in energetic materials. Chin J Energetic Mater 30(09):937–951

    Google Scholar 

  43. Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311. https://doi.org/10.1038/nature10344

    Article  Google Scholar 

  44. Luo S, Chen Z, Dong Z, Fan Y, Chen Y, Liu B, Yu C, Li C, Dai H, Li H, Wang Y, Jiang L (2019) Uniform spread of high-speed drops on superhydrophobic surface by live-oligomeric surfactant jamming. Adv Mater 31(41):1904475. https://doi.org/10.1002/adma.201904475

    Article  Google Scholar 

  45. Staymates ME, Fletcher R, Verkouteren M, Staymates JL, Gillen G (2015) The production of monodisperse explosive particles with piezo-electric inkjet printing technology. Rev Sci Instrum 86(12):125114. https://doi.org/10.1063/1.4938486

    Article  Google Scholar 

  46. Murray AK, Novotny WA, Fleck TJ, Gunduz IE, Son SF, Chiu GTC, Rhoads JF (2018) Selectively-deposited energetic materials: a feasibility study of the piezoelectric inkjet printing of nanothermites. Additive Manuf 22:69–74. https://doi.org/10.1016/j.addma.2018.05.003

    Article  Google Scholar 

  47. Westphal ER, Murray AK, McConnell MP, Fleck TJ, Chiu GT-C, Rhoads JF, Gunduz IE, Son SF (2019) The effects of confinement on the fracturing performance of printed nanothermites. Propellants Explos Pyrotech 44(1):47–54. https://doi.org/10.1002/prep.201800188

    Article  Google Scholar 

  48. Fletcher RA, Brazin JA, Staymates ME, Benner BA Jr., Gillen JG (2008) Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process. Talanta 76(4):949–955. https://doi.org/10.1016/j.talanta.2008.04.066

    Article  Google Scholar 

  49. Windsor E, Najarro M, Bloom A, Benner B Jr., Fletcher R, Lareau R, Gillen G (2010) Application of inkjet printing technology to produce test materials of 1,3,5-trinitro-1,3,5 triazcyclohexane for trace explosive analysis. Anal Chem 82(20):8519–8524. https://doi.org/10.1021/ac101439r

    Article  Google Scholar 

  50. Yi F, Gillen G, Lawrence J, Forbes TP, Staymates M, LaVan DA (2020) Nanocalorimetry of explosives prepared by inkjet printing. Thermochim Acta 685. https://doi.org/10.1016/j.tca.2020.178510

  51. Xu CH, An CW, Long YL, Li QB, Guo H, Wang S, Wang JY (2018) Inkjet printing of energetic composites with high density. RSC Adv 8(63):35863–35869. https://doi.org/10.1039/c8ra06610h

    Article  Google Scholar 

  52. He Y, Guo X, Long Y, Huang G, Ren X, Xu C, An C (2020) Inkjet printing of GAP/NC/DNTF based microscale booster with high strength for pyroMEMS. Micromachines (Basel) 11(4). https://doi.org/10.3390/mi11040415

  53. Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26(40):6950–6958. https://doi.org/10.1002/adma.201305416

    Article  Google Scholar 

  54. Fromm JE (1984) Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Dev 28(3):322–333. https://doi.org/10.1147/rd.283.0322

    Article  Google Scholar 

  55. Derby B, Lee DH, Wang T, Hall D (2002) Development of PZT suspensions for ceramic ink-jet printing. MRS Online Proceedings Library (OPL). ;758:LL3.7. https://doi.org/10.1557/PROC-758-LL3.7

  56. Hribar KC, Soman P, Warner J, Chung P, Chen S (2014) Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14(2):268–275. https://doi.org/10.1039/c3lc50634g

    Article  Google Scholar 

  57. Yi-fan J, Feng-qi Z, Hui L, Ming Z, Zhour-feng J, **ao-ting H, Jian-kan Z, Na L, Ya-tan D (2022) Direct ink writing technology for additive manufacturing and its research progress in energetic materials. Chin J Explosives&Propellants 45(01):1–19. https://doi.org/10.14077/j.issn.1007-7812.202101011

    Article  Google Scholar 

  58. Wang JY, Xu CH, An CW, Song CK, Liu B, Wu BD, Geng XH (2017) Preparation and properties of CL-20 based composite by direct ink writing. Propellants Explosives Pyrotechnics 42(10):1139–1142. https://doi.org/10.1002/prep.201700042

    Article  Google Scholar 

  59. Li Q, An C, Han X, Xu C, Song C, Ye B, Wu B, Wang J (2018) CL-20 based explosive ink of emulsion binder system for direct ink writing. Propellants Explos Pyrotech 43(6):533–537. https://doi.org/10.1002/prep.201800064

    Article  Google Scholar 

  60. Xu C, An C, He Y, Zhang Y, Li Q, Wang J (2018) Direct ink writing of DNTF based composite with high performance. Propellants Explos Pyrotech 43(8):754–758. https://doi.org/10.1002/prep.201800075

    Article  Google Scholar 

  61. Wang DJ, Guo CP, Wang RH, Zheng BH, Gao B, Nie FD (2020) Additive manufacturing and combustion performance of CL-20 composites. J Mater Sci 55(7):2836–2845. https://doi.org/10.1007/s10853-019-04209-w

    Article  Google Scholar 

  62. By Y, Ck S, Huang H, Li Q, Cw A (2020) Direct ink writing of 3D-honeycombed CL-20 structures with low critical size. Def Technol 16(3):588–595. https://doi.org/10.1016/j.dt.2019.08.019

    Article  Google Scholar 

  63. Brilian AI, Soum V, Park S, Lee S, Kim J, Kwon K, Kwon OS, Shin K (2021) A simple route of printing explosive crystalized micro-patterns by using direct ink writing. Micromachines (Basel) 12(2):105. https://doi.org/10.3390/mi12020105

    Article  Google Scholar 

  64. Shen J, Wang H, Kline DJ, Yang Y, Wang X, Rehwoldt M, Wu T, Holdren S, Zachariah MR (2020) Combustion of 3D printed 90 wt% loading reinforced nanothermite. Combust Flame 215:86–92. https://doi.org/10.1016/j.combustflame.2020.01.021

    Article  Google Scholar 

  65. Zhou X, Mao Y, Zheng D, Zhong L, Wang R, Gao B, Wang D (2021) 3D printing of RDX-based aluminized high explosives with gradient structure, significantly altering the critical dimensions. J Mater Sci 56(15):9171–9182. https://doi.org/10.1007/s10853-021-05869-3

    Article  Google Scholar 

  66. Wang **n, Da-wei Z, Xu Z, Ye-ming H, Dun-ju W (2022) Construction and combustion performance of AVPTFE-based reactive materials with hollow structure. Chin J Energetic Mater. https://doi.org/10.11943/CJEM2022074

  67. del-Mazo-Barbara L, Ginebra M-P (2021) Rheological characterisation of ceramic inks for 3D direct ink writing: a review. J Eur Ceram Soc 41(16):18–33. https://doi.org/10.1016/j.jeurceramsoc.2021.08.031

    Article  Google Scholar 

  68. Sarangapani R, Ramavat V, Reddy S, Subramanian P, Sikder AK (2015) Rheology studies of NTO-TNT based melt-cast dispersions and influence of particle-dispersant interactions. Powder Technol 273:118–124. https://doi.org/10.1016/j.powtec.2014.12.013

    Article  Google Scholar 

  69. M’Barki A, Bocquet L, Stevenson A (2017) Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci Rep 7(1):6017. https://doi.org/10.1038/s41598-017-06115-0

    Article  Google Scholar 

  70. Chen M, Li H, Yang L, Wang S, Zhao P, Huang Y, Lu L, Yue G, Li Q (2022) Rheology and shape stability control of 3D printed calcium sulphoaluminate cement composites containing paper milling sludge. Additive Manuf 54:102781. https://doi.org/10.1016/j.addma.2022.102781

    Article  Google Scholar 

  71. Hull CW (1984) Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed

  72. Florence JM, Yoder LA (1996) Display system architectures for digital micromirror device (DMD)-based projectors. Proc. SPIE 2650, Projection Displays II. https://doi.org/10.1117/12.237004

  73. Bo-jun T, Bin C, Ya-**g L, Wei W, Zi-sen L, Ying-lei W, Chuan X Photocurable 3D printing molding of propellants and explosives. J Zhejiang Univ (Engineering Science). https://doi.org/10.3785/j.issn.1008-973X.2021.08.021

  74. Straathof MH, van Driel CA, van Lingen JNJ, Ingenhut BLJ, ten Cate AT, Maalderink HH (2020) Development of propellant compositions for vat photopolymerization additive manufacturing. Propellants Explosives Pyrotechnics 45(1):36–52. https://doi.org/10.1002/prep.201900176

    Article  Google Scholar 

  75. Yang WT, Hu R, Zheng L, Yan GH, Yan WR (2020) Fabrication and investigation of 3D-printed gun propellants. Mater Design 192:108761. https://doi.org/10.1016/j.matdes.2020.108761

    Article  Google Scholar 

  76. Rui H, Wei-tao Y, Zai-xing J, **an-feng Y, Qiong-lin W (2020) 3D printing method of gun propellants based on vat photopolymerization. Chin J Explosives&Propellants 43(04):368–371. https://doi.org/10.14077/j.issn.1007-7812.201909033

    Article  Google Scholar 

  77. Li MM, Yang WT, Xu MH, Hu R, Zheng L (2021) Study of photocurable energetic resin based propellants fabricated by 3D printing. Mater Design 207. https://doi.org/10.1016/j.matdes.2021.109891

  78. McClain MS, Gunduz IE, Son SF (2019) Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proceedings of the Combustion Institute. ;37(3):3135-42. https://doi.org/10.1016/j.proci.2018.05.052

  79. Shuo L, Hongfu Q, Hui C, Lu W, Lijun Z, Runzhi H (2022) Formulation research on UV-curable polyether modified HTPB solid propellant for 3D printing. J Solid Rocket Technol 45(03):399–406

    Google Scholar 

  80. Fu J, Yin H, Yu X, **e C, Jiang H, ** Y, Sheng F (2018) Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm 549(1):370–379. https://doi.org/10.1016/j.ijpharm.2018.08.011

    Article  Google Scholar 

  81. Bagheri A, ** J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611. https://doi.org/10.1021/acsapm.8b00165

    Article  Google Scholar 

  82. Wu B, Zhu K, Wang F, Wen X, Li M, Yang Y, Yang J (2022) Development of PA6/GO microspheres with good processability for SLS 3D printing. Polym Eng Sci 62(5):1700–1709. https://doi.org/10.1002/pen.25957

    Article  Google Scholar 

  83. Gan X, Wang J, Wang Z, Zheng Z, Lavorgna M, Ronca A, Fei G, **a H (2019) Simultaneous realization of conductive segregation network microstructure and minimal surface porous macrostructure by SLS 3D printing. Mater Design 178:107874. https://doi.org/10.1016/j.matdes.2019.107874

    Article  Google Scholar 

  84. Yan-qing W, **g-xing S, Hai-quan W (2016) Application and research status of alternative materials for 3D-printing technology. J Aeronaut Mater 36(04):89–98

    Google Scholar 

  85. Fu Y, Yan C, Yang X, Liu Z, Chen P, Li Z (2021) Preparation and selective laser sintering of nylon-12 coated copper powders. Rapid Prototyp J 27(7):1355–1362. https://doi.org/10.1108/rpj-06-2020-0131

    Article  Google Scholar 

  86. Fleck TJ, Murray AK, Gunduz IE, Son SF, Chiu GTC, Rhoads JF (2017) Additive manufacturing of multifunctional reactive materials. Additive Manuf 17:176–182. https://doi.org/10.1016/j.addma.2017.08.008

    Article  Google Scholar 

  87. Bencomo JA, Iacono ST, McCollum J (2018) 3D printing multifunctional fluorinated nanocomposites: tuning electroactivity, rheology and chemical reactivity. J Mater Chem A 6(26):12308–12315. https://doi.org/10.1039/c8ta00127h

    Article  Google Scholar 

  88. Knott MC, Craig AW, Shankar R, Morgan SE, Iacono ST, Mates JE, McCollum JM (2021) Balancing processing ease with combustion performance in aluminum/PVDF energetic filaments. J Mater Res 36(1):203–210. https://doi.org/10.1557/s43578-020-00063-8

    Article  Google Scholar 

  89. Collard DN, Fleck TJ, Rhoads JF, Son SF (2021) Tailoring the reactivity of printable Al/PVDF filament. Combust Flame 223:110–117. https://doi.org/10.1016/j.combustflame.2020.09.016

    Article  Google Scholar 

  90. Van Driel C, Straathof M, Van Lingen J (eds) (2017) Developments in additive manufacturing of energetic materials at TNO. 30th International Symposium on Ballistics. https://doi.org/10.12783/ballistics2017/16867

  91. Lei X, Qing-hua W, Wan-hui L, Qiao-e L, Ga-zi H, **ang-dong G, **ang K, Jie L, Wei J, Yu Q, Cheng T (2018) Preparation and performances of nano-HMX and TNT melt-cast explosives based on 3D printing technology. Acta Armamentarii 39(07):1291–1298

    Google Scholar 

  92. ** N, Zhiqiang Z (2020) Research progress of solid propellants prepared by 3D printing technique. Chem Propellants Polym Mater 18(01):24–29. https://doi.org/10.16572/j.issn1672-2191.202009009

    Article  Google Scholar 

  93. Creech M, Crandell A, Eisenhauer N, Marx S, Busari T, Link A, Gabl J, Pourpoint TL (2015) 3D printer for paraffin based hybrid rocket fuel grains. 53rd AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2015-0924

  94. Wei W, Wei L, Fang W, **aomeng F, Guoshu X (2017) Design and preparation of chocolate-type propellant used for additive manufacturing research. Chem Propellants Polym Mater 15(05):71–74. https://doi.org/10.16572/j.issn1672-2191.201705012

    Article  Google Scholar 

  95. Kudryashova O, Lerner M, Vorozhtsov A, Sokolov S, Promakhov V (2021) Review of the problems of additive manufacturing of nanostructured high-energy materials. Mater (Basel) 14(23):7394. https://doi.org/10.3390/ma14237394

    Article  Google Scholar 

  96. Chaunier L, Guessasma S, Belhabib S, Della Valle G, Lourdin D, Leroy E (2018) Material extrusion of plant biopolymers: opportunities & challenges for 3D printing. Additive Manuf 21:220–233. https://doi.org/10.1016/j.addma.2018.03.016

    Article  Google Scholar 

  97. Bellini A, Güçeri S, Bertoldi M (2004) Liquefier dynamics in fused deposition. J Manuf Sci Eng 126(2):237–246. https://doi.org/10.1115/1.1688377

    Article  Google Scholar 

  98. Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2(4):4–19

    Article  Google Scholar 

  99. Hopmann C, Michaeli W (2016) Extrusion dies for plastics and rubber: design and engineering computations, p I-XVIII. https://doi.org/10.3139/9781569906248.007

  100. Bellini A (2002) Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design. Drexel University

  101. Venkataraman N, Rangarajan S, Matthewson MJ, Harper B, Safari A, Danforth SC, Wu G, Langrana N, Guceri S, Yardimci A (2000) Feedstock material property-process relationships in fused deposition of ceramics (FDC). Rapid Prototyp J 6(4):244–253. https://doi.org/10.1108/13552540010373344

    Article  Google Scholar 

  102. Turner N, Strong B, Gold RA (2014) A review of melt extrusion additive manufacturing processes: I. process design and modeling. Rapid Prototyp J 20(3):192–204. https://doi.org/10.1108/RPJ-01-2013-0012

    Article  Google Scholar 

  103. Crockett RS (1997) The liquid-to-solid transition in stereodeposition techniques. The University of Arizona

Download references

Acknowledgements

The authors acknowledge the support from the National Special Superfine Powder Engineering Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei **ao or Wei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The process of 3D printing energetic materials is elaborated.

The printability of energetic materials was analyzed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Hz., Wang, Sw., Ren, H. et al. Energetic materials in 3D: an in-depth exploration of additive manufacturing techniques. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13937-6

Keywords

Navigation