Log in

Numerical simulation studies of jet rapid solidification technology for magnetic materials: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Jet rapid solidification (JRS) is a key process to obtain the ribbon of magnetic materials. Numerical simulation is an effective method to analyze real-time distribution of status parameters during the JRS process and optimize the process. In this paper, the numerical simulation research in two JRS processes, namely, planar flow casting (PFC) and melt spinning (MS), is reviewed. First, based on the principle of rapid solidification, the working principles of PFC and MS processes are summarized and distinguished. The theoretical models, analytical models, and research methods of PFC and MS processes are further introduced and compared in three main research aspects, denoted as melt puddle, cooling roller, and inclusions in the tundish. Regarding the melt puddle, the influence of the melt puddle on the thickness of rapidly solidified ribbons is analyzed. The flow behavior and heat transfer analysis of melt puddle are discussed. In terms of the cooling roller, numerical analyses of the cooling roller structure optimization, parameter optimization, and “fluid–solid-thermal” coupling are summarized. Moreover, the simulation of the movement of inclusions in the PFC tundish is compared. Lastly, the current challenges and future opportunities are also addressed. The development of high-quality JRS ribbons has significant theoretical, social, and economic significance because its quality and stability determine the final characteristics of magnets. Therefore, the application of numerical simulation technology in the JRS process is beneficial for optimizing process routes and system structures, achieving the visual tracking of process, and objectively guiding the development of new JRS equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Hc:

Coercivity of magnetic materials (Oe or A/m)

Br:

Remanence of magnetic materials (T or Gs)

BH:

Magnetic energy product of magnetic materials (GOe or J/m3)

V :

Solidification velocity of molten alloy (ms)

B :

Breadth of the nozzle slot (mm)

G :

Gap between the nozzle face and the surface of chill wheel (mm)

T :

Ribbon thickness (mm)

U :

Linear velocity of wheel surface (m/s)

L :

Puddle length (mm)

∆P :

Over pressure at the outlet of nozzle slot (KPa)

USM:

Upstream meniscus

DSM:

Downstream meniscus

t d :

Dwell time of ribbon (s)

T j :

Jetting temperature of molten alloy (K or ℃)

D :

Diameter of casting wheel (mm)

Th :

Thickness of casting wheel (mm)

μ m :

Viscosity of the molten alloy (Pa·s)

h ω :

Average heat transfer coefficient between cooling roller and water (W/(m2 ·K))

h a :

Average heat transfer coefficient between cooling roller and ambient air (W/(m2 ·K))

We :

Weber number

λ ω :

Thermal conductivity of cooling water (W/(m·K))

ρ ω :

Density of cooling water (kg/m)

μ ω :

Viscosity density of cooling water (Pa·s)

u ω :

Velocity of cooling water (m/s)

C ω :

Specific heat capacity of cooling water (J/(kg·K))

d :

Cooling channel equivalent diameter (m)

g :

Gravity acceleration (m/s2)

Fe :

Electromagnetic force (N)

S T :

Source term of energy equation

Prt :

Prandtl number of the turbulent

References

  1. Elshkaki A (2021) Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature. Commun Earth Environ 2(1):186. https://doi.org/10.1038/s43247-021-00262-z

    Article  Google Scholar 

  2. Wan C, Zhou D, Xue B (2022) LCA-based carbon footprint accounting of mixed rare earth oxides production from ionic rare earths. Processes 10(7):1354–1354. https://doi.org/10.3390/pr10071354

    Article  Google Scholar 

  3. Bruno NM, Adoo NA, Meakins E, Keylin V, Feichter GE, Noebe RD (2023) The effect of stress-annealing on the mechanical and magnetic properties of several Fe-based metal-amorphous nano-composite soft magnetic alloys. J of Non-Cryst Solids 600:122037. https://doi.org/10.1016/j.jnoncrysol.2022.122037

  4. Miao JK, Fan YZ, Li HL, Li XT, Wei R, Wang T, Wu SJ, Li FS, Chen C (2022) Revealing the effects of cooling rate on soft magnetic properties of (Fe0.9Co0.1)86Ni1B13 amorphous alloy. Intermetallics 146:107583. https://doi.org/10.1016/j.intermet.2022.107583

  5. Chen SY, Liu TY, Gu F, Wang S, Sun JB, Cui CX (2021) Comparative study on the structure and magnetic properties of Sm10Co60Fe15 (Al, B)15 amorphous-nanocrystalline ribbons. J Non-Cryst Solids 560:120751. https://doi.org/10.1016/j.jnoncrysol.2021.120751

  6. Suslick KS, Choe SB, Cichowlas AA, Grinstaff M (1991) Sonochemical synthesis of amorphous iron. Nature 353(6343):414–416. https://doi.org/10.1038/353414a0

    Article  Google Scholar 

  7. Elk K, Jahn L (1991) Characteristics of permanent magnetic coercivity with application to sintered hard ferrites. Physica Status Solidi (B) 168(2):591–596. https://doi.org/10.1002/pssb.2221680220

    Article  Google Scholar 

  8. Coey JMD (2020) Perspective and prospects for rare earth permanent magnets. Engineering 6(2):119–131. https://doi.org/10.1016/j.eng.2018.11.034

    Article  MathSciNet  Google Scholar 

  9. Zhang PJ, Zhu MG, Li W, Xu GQ, Huang XL, Yi XF, Chen JW, Wu YC (2018) Study on preparation and properties of CeO2/epoxy resin composite coating on sintered NdFeB magnet. J Rare Earths 36(05):544–551. https://doi.org/10.1016/j.jre.2017.11.012

    Article  Google Scholar 

  10. Liu BW, Zhu NW, Li Y, Wu PX, Dang Z, Ke YX (2019) Efficient recovery of rare earth elements from discarded NdFeB magnets. Process Saf Environ Prot 124:317–325. https://doi.org/10.1016/j.psep.2019.01.026

    Article  Google Scholar 

  11. Goodenough KM, Wall F, Merriman D (2018) The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res 27(2):201–216. https://doi.org/10.1007/s11053-017-9336-5

    Article  Google Scholar 

  12. Marot L, Jakob S, Martina M, Reimann P, Breitenstein H, Steinacher M, Meyer E (2022) Reimann Brake Ramp for planar flow casting processes and analysis of ribbon gluing. J Market Res 16:734–742. https://doi.org/10.1016/j.jmrt.2021.11.129

    Article  Google Scholar 

  13. Ouyang GY, Macziewski CR, Jensen B, Ma T, Choudhary R, Dennis K, Zhou L, Paudyal D, Anderson I, Kramer MJ, Cui J (2021) Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5%Si alloys. Acta mater 205:116575. https://doi.org/10.1016/j.actamat.2020.116575

  14. Zivotsky O, Titov A, Jiraskova Y, Bursík J, Kalbácová J, Janickovic D, Svec P (2013) Full-scale magnetic, microstructural, and physical properties of bilayered CoSiB/FeSiB ribbons. J Alloy Compd 581:685–692. https://doi.org/10.1016/j.jallcom.2013.07.126

    Article  Google Scholar 

  15. Wang C, Mitra AK (2014) Numerical and analytical modeling of free-jet melt spinning for Fe75Si10B15(at.%) metallic glasses. J Heat Transfer-ASME 136(7): 072101. https://doi.org/10.1115/1.4027151

  16. Wang L, Wang J, Rong MH, Rao GH, Zhou HY (2018) Effect of wheel speed on phase formation and magnetic properties of (Nd0.4La0.6)-Fe-B melt-spun ribbons. J Rare Earths 36(11):1179–1183. https://doi.org/10.1016/j.jre.2018.02.013

    Article  Google Scholar 

  17. Du YY, Yin WZ, Chen RJ, Tang X, Ju JY, Chen B, Hou LQ, Yan AR, Yuan JH (2021) Effect of surface Nd-rich phase and oxygen content of melt-spun flakes on formation of coarse grains in hot-pressed Nd-Fe-B magnet. J Rare Earths 39(11):1389–1395. https://doi.org/10.1016/j.jre.2020.09.018

    Article  Google Scholar 

  18. Lee RW, Brewer EG, Schaffe NA (1985) Processing of neodymium-iron-boron melt-spun ribbons to fully dense magnets. IEEE Trans Magn 21(5):1958–1963. https://doi.org/10.1109/TMAG.1985.1064031

    Article  Google Scholar 

  19. Levingston JM, Pozo-Lopez G, Condo AM, Urreta SE, Fabietti LM (2018) Microstructure and magnetic properties of twin roller melt spun NdFeB alloys. Materialia 2:122–130. https://doi.org/10.1016/j.mtla.2018.07.016

    Article  Google Scholar 

  20. **e JJ, Yuan C, Luo Y, Yang YF, Hu B, Yu DB, Yan WL (2017) Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion. J Magn Magn Mater 446:210–213. https://doi.org/10.1016/j.jmmm.2017.08.047

    Article  Google Scholar 

  21. Zhai FQ, Sun AZ, Yuan D, Wang J, Wu S, Volinsky AA, Wang ZX (2010) Epoxy resin effect on anisotropic Nd-Fe-B rubber-bonded magnets performance. J Alloy Compd 509(3):687–690. https://doi.org/10.1016/j.jallcom.2010.09.210

    Article  Google Scholar 

  22. Hioki K (2021) High performance hot-deformed Nd-Fe-B magnets (Review). Sci Technol Adv Mater 22(1):72–84. https://doi.org/10.1080/14686996.2020.1868049

    Article  Google Scholar 

  23. Wang XC, Yue M, Zhang DT, Liu WQ, Zhu MG (2020) Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method. Rare Met 39(10):1145–1150. https://doi.org/10.1007/s12598-019-01229-y

    Article  Google Scholar 

  24. Bussmann M, Mostaghimi J, Kirk DW, Graydon JW (2002) A numerical study of steady flow and temperature fields within a melt spinning puddle. Int J Heat Mass Transf 45(19):3997–4010. https://doi.org/10.1016/S0017-9310(02)00112-6

    Article  Google Scholar 

  25. Karcher C, Steen PH (2001) High-Reynolds-number flow in a narrow gap driven by solidification. II. Planar-flow casting application. Phys Fluids 13(4):834–840. https://doi.org/10.1063/1.1352637

    Article  Google Scholar 

  26. Byrne CJ, Weinstein SJ, Steen PH (2006) Capillary stability limits for liquid metal in melt spinning. Chem Eng Sci 61(24):8004–8009. https://doi.org/10.1016/j.ces.2006.06.026

    Article  Google Scholar 

  27. Overman NR, Jiang XJ, Kukkadapu RK, Clark T, Roosendaal TJ, Coffey G, Shield JE, Mathaudhu SN (2018) Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons. Mater Charact 136:212–220. https://doi.org/10.1016/j.matchar.2017.12.019

    Article  Google Scholar 

  28. Ztürk S, Sünbül SE, Metolu A, Için K (2020) Improvement of microstructure, tribology and corrosion characteristics of nickel-aluminum bronze by P/M method. Tribol Int 151:106519. https://doi.org/10.1016/j.triboint.2020.106519

  29. Liu HP, Chen WZ, Chen YQ, Liu GD (2010) Thermal deformation analysis of the rotating roller in planar flow casting process. ISIJ Int 50(10):1431–1440. https://doi.org/10.2355/isi**ternational.50.1431

    Article  Google Scholar 

  30. Dutta R, Chen L, Renshaw D, Liang D (2022) Artificial intelligence automates the characterization of reversibly actuating planar-flow-casted NiTi shape memory alloy foil. PloS One 17(10):e0275485. https://doi.org/10.1371/journal.pone.0275485

  31. Mattson J, Theisen E, Steen P (2018) Rapid solidification forming of glassy and crystalline ribbons by planar flow casting. Chem Eng Sci 192:1198–1208. https://doi.org/10.1016/j.ces.2018.07.017

    Article  Google Scholar 

  32. Ozturk S, Icin K, Ozturk B, Topal U, Karaagaç O, Kockar H (2018) The role of wheel surface quality on structural and hard magnetic properties of Nd-Fe-B permanent magnet powders. J Supercond Novel Magn 31(9):3025–3041. https://doi.org/10.1007/s10948-018-4561-7

    Article  Google Scholar 

  33. Li YK, Li C, Jiang HJ, Li RZ (2022) Flow and heat transfer in a novel convex cooling roller with axial variable boundary for planar flow casting. Appl Therm Eng 200:1–8. https://doi.org/10.1016/j.applthermaleng.2021.117675

    Article  Google Scholar 

  34. Song YM, Yang Y (2014) CFD investigation on the flow structure inside cooling roll. Appl Mech Mater 602–605:172–175. https://doi.org/10.4028/www.scientific.net/AMM.602-605.172

    Article  Google Scholar 

  35. Mei J, Qi Y, Xu LH, Zang Y, Zhao DL (2018) Flow field and temperature field simulation of improved rapid quenching cooling copper roller. Metallic Funct Mater 25(3):1–5. https://doi.org/10.13228/j.boyuan.issn1005-8192.2018009

    Article  Google Scholar 

  36. Li YK, Yang Y, Song YM (2017) Cooling roller steady-state heat flux and temperature analysis in amorphous ribbon preparing process. Rare Metal Mater Eng 46(4):917–922. https://doi.org/10.1016/S1875-5372(17)30122-4

    Article  Google Scholar 

  37. Song YM, Meng FY, Dong ML, Zhu LQ (2017) Numerical simulation on heat transfer inner runner of cooling copper roller used in amorphous ribbon forming. Forging Stamp Technol 42(9):168–173. https://doi.org/10.13330/j.issn.1000-3940.2017.09.031

    Article  Google Scholar 

  38. Li YK, Yang Y (2021) Flow and heat transfer characteristics and collaborative optimization of cooling roller for preparing amorphous ribbons. Rare Metal Mater Eng 50(2):519–524. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh-mmgNZZAA82cj7rARwaef94ohnhajSWHCN6lx6ZaKcC6Jzu_crQTPyIwkV-9Zkdz0i2mAxhRQEemSIlhyOEB-Z02Kfs85NhhsGL59baC7dvWa5Q-OIbC8Hfiii9KjzlxA=&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  39. Chen L, Li YL, Shen NN, Hui XD (2022) Three-dimensional temperature and stress field simulation with all-hexahedral element mesh in a high efficiency cooling structure for the fabrication of amorphous ribbons. Mater Res Express 9(3):036101. https://doi.org/10.1088/2053-1591/ac5952

  40. Wang X, Zhu M, Li W, **n H, Du X, Du A (2015) Simulation of melt spinning process of NdFeB nanocrystalline ribbons based on ansys. 2015 IEEE International Magnetics Conference (INTERMAG). Bei**g, China 2015:1–1. https://doi.org/10.1109/INTMAG.2015.7156592

  41. Theisen EA, Weinstein SJ (2022) An overview of planar flow casting of thin metallic glasses and its relation to slot coating of liquid films. J Coat Technol Res 19(1):49–60. https://doi.org/10.1007/s11998-021-00503-y

    Article  Google Scholar 

  42. Wang HP, Lu P, Cai X, Zhai B, Zhao JF, Wei B (2020) Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state. Mater Sci Eng, A 772:1–14. https://doi.org/10.1016/j.msea.2019.138660

    Article  Google Scholar 

  43. Young CJ, Farhat AS, Choa YH, Kim TS (2019) Effect of powder size on the microstructure and magnetic properties of Nd-Fe-B magnet alloy. Arch Metall Mater 64(2):623–626. https://doi.org/10.24425/amm.2019.127589

    Article  Google Scholar 

  44. Mullis AM, Jegede OE, Bigg TD, Cochrane RF (2020) Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys. Acta Mater 188:591–598. https://doi.org/10.1016/j.actamat.2020.02.017

    Article  Google Scholar 

  45. Napolitano RE, Meco H (2004) The role of melt pool behavior in free-jet melt spinning. Metall Mater Trans A 35A(5):1539–1553. https://doi.org/10.1007/s11661-004-0261-y

    Article  Google Scholar 

  46. Wang CB, Mitra AK (2014) Numerical and analytical modeling of free-jet melt spinning for Fe75Si10B15 (at.%) metallic glasses. J Heat Transf 136(7):072101. https://doi.org/10.1115/1.4027151

  47. Meco H, Napolitano RE (2005) Upper-bound velocity limit for free-jet melt spinning. Mater Sci Forum 475–479:3371–3376. https://doi.org/10.4028/www.scientific.net/MSF.475-479.3371

    Article  Google Scholar 

  48. Liu Y, Qiu H, He ZX, Yu Y, Liu HP (2022) A study of physical modeling and mathematical modeling on inclusion behavior in a planar flow casting process. Metals 12(4):1–11. https://doi.org/10.3390/met12040606

    Article  Google Scholar 

  49. Ozturk S, Sunbul SE, Metoglu A, Kursat I (2020) Improvement of microstructure, tribology and corrosion characteristics of nickel-aluminum bronze by P/M method. Tribol Int 151:1–13. https://doi.org/10.1016/j.triboint.2020.106519

    Article  Google Scholar 

  50. Wu SL, Chen CW, Hwang WS, Yang CC (1992) Analysis for melt puddle in the planar flow casting process-a mathematical modelling study. Appl Math Model 16(8):394–403. https://doi.org/10.1016/0307-904X(92)90074-D

    Article  Google Scholar 

  51. Li YK, Yang Y, He CY (2018) Three-dimensional transient temperature analysis of cooling roller for preparing amorphous ribbon. J Non-Cryst Solids 481:276–281. https://doi.org/10.1016/j.jnoncrysol.2017.10.052

    Article  Google Scholar 

  52. Liu HP, Chen WZ, Liu GD (2009) Parametric investigation of interfacial heat transfer and behavior of the melt puddle in planar flow casting process by numerical simulation. ISIJ Int 49(12):1895–1901. https://doi.org/10.2355/isi**ternational.49.1895

    Article  Google Scholar 

  53. Chen L, Li YL, Shen NN, Hui XD (2022) 3-D steady time-independent simulation on the fluid flow field and heat transfer of cooling roller during planar flow casting process. Rare Metal Mater Eng 51(04):1211–1217. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh-2ZcCLkZbrrtwm_fxqDWzDf702s27HkA1XafTKdcGtqBTdr4UYckrFA8qONs1jg095o40GwlCNmlZQ6wSCbczKMFsy3WcsyKbPrGC0U5Q0FnWTF68pnpGubinQndUbX3s=&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  54. Zhou B, Fan WB, Liao XF, He JY, Yu HY, Liu ZW (2022) Fully understanding the performance of nanocrystalline ternary Pr-Fe-B alloys with three typical phase constitutions. J Magn Magn Mater 555:169374. https://doi.org/10.1016/j.jmmm.2022.169374

  55. Li R, Shang RX, **ong JF, Liu D, Kuang H, Zuo WL, Zhao TY, Sun JR, Shen BG (2017) Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets. AIP Adv 7(5):056207. https://doi.org/10.1063/1.4973846

  56. Li DR,Wang WJ, Liu TC, Li LJ, Lu ZC (2022) Reducing the core losses of Fe-Si-B amorphous alloy ribbons by high cooling rate planar flow casting. Materials 15(3):894. https://doi.org/10.3390/MA15030894

  57. Lu S, Li HW, Yu DB, Pang M, Wang B (2012) A new method to study the thermal fatigue resistance of molybdenum by high power laser irradiation. Appl Mech Mater 184–185:1384–1388. https://doi.org/10.4028/www.scientific.net/AMM.184-185.1384

    Article  Google Scholar 

  58. Kim YG, Gam KS, Yang I (2010) Realization of Fe-C eutectic point using an alumina crucible. Int J Thermophys 31(8–9):1498–1505. https://doi.org/10.1007/s10765-010-0783-z

    Article  Google Scholar 

  59. Wang S, Du M, ** Y, Li QL, Li JP, Zhang HR, Zhang H, Cheng Y (2023) Characterization and mechanism analysis of interaction between Inconel 713C superalloy and a novel crucible-shell “integrated” mold. Vacuum 209:111750. https://doi.org/10.1016/j.vacuum.2022.111750

  60. Henschel S, Gleinig J, Lippmann T, Dudczig S, Aneziris CG, Biermann H, Krüger L, Weidner A (2017) Effect of crucible material for ingot casting on detrimental non-metallic inclusions and the resulting mechanical properties of 18CrNiMo7–6 steel. Adv Eng Mater 19(9): 1700199. https://doi.org/10.1002/adem.201700199

  61. Sheng DY, Windisch C (2021) A simulation-based digital design methodology for studying conjugate heat transfer in tundish. Metals 12(1):62. https://doi.org/10.3390/met12010062

    Article  Google Scholar 

  62. Fang Y, Ba DC, Zhang YC, Du WQ, Sun BY (2009) Simulation of temperature field in the rapid solidification process of Nd-Fe-B based on ANSYS. Proceedings of the 9th Vacuum Metallurgy and Surface Engineering Conference 529–532. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh9GA1_iIo7QRJd2JjkaozSq4GEy2UoNK_wfaDpvuqqBosTFC-7_725TYabSGmD0zr3BTGLwVxN8oMflRREZBHdk6enkSVPsvGPqjUE-8jLgk4Xyh6tlS7zp6t_tPr7OEtAHwk2H9P-Lrw==&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  63. Su YG, Chen FL, Wu CY, Chang MH, Chung CA (2015) Effects of manufacturing parameters in planar flow casting process on ribbon formation and puddle evolution of Fe-Si-B alloy. ISIJ Int 55(11):2383–2390. https://doi.org/10.2355/isi**ternational.ISIJINT-2015-349

    Article  Google Scholar 

  64. Jung T, Lee J, Lee J (2021) Design and fabrication of magnetic system using multi-material topology optimization. IEEE Access 9:8649–8658. https://doi.org/10.1109/ACCESS.2021.3049271

    Article  Google Scholar 

  65. Schaeffer DJ, Gilbert KM, Hori Y, Gati JS, Menon RS, Everling S (2019) Integrated radiofrequency array and animal holder design for minimizing head motion during awake marmoset functional magnetic resonance imaging. Neuroimage 193:126–138. https://doi.org/10.1016/j.neuroimage.2019.03.023

    Article  Google Scholar 

  66. Ricardo RO, Patricia DB, Mouhssin DEB, Luis MJ, John CK, Leon R (2022) Two-piece magnet-retained shell manufactured by using milled and vat-polymerized methods for direct interim restorations. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2022.05.030

    Article  Google Scholar 

  67. Li D, Zhuang JH, Liu TC, Lu ZC, Zhou SX (2011) The pressure loss and ribbon thickness prediction in gap controlled planar-flow casting process. J Mater Process Technol 211(11):1764–1767. https://doi.org/10.1016/j.jmatprotec.2011.05.019

    Article  Google Scholar 

  68. Sowjanya M, Reddy TKK (2017) Flow dynamics in the melt puddle during planar flow melt spinning process. Mater Today: Proceedings 4(2):3728–3735. https://doi.org/10.1016/j.matpr.2017.02.268

    Article  Google Scholar 

  69. Li DR, Lu ZC (2020) The effects of aging on the cyclical thermal shock response of a copper-beryllium alloy as a substrate of cooling wheel in planar flow casting process. Mater Res Express 7(11):116511. https://doi.org/10.1088/2053-1591/abc653

  70. Altieri AL, Steen PH (2014) Adhesion upon solidification and detachment in the melt spinning of metals. Metall Mater Trans 45(6):2262–2268. https://doi.org/10.1007/s11663-014-0128-6

    Article  Google Scholar 

  71. Carpenter JK, Steen PH (1992) Planar-flow spin-casting of molten metals: process behaviour. J Mater Sci 27(1):215–225. https://doi.org/10.1007/BF02403666

    Article  Google Scholar 

  72. Karcher C, Steen PH (2001) High-Reynolds-number flow in a narrow gap driven by solidification. I. Theory. Phys Fluids 13(4):826–833. https://doi.org/10.1063/1.1352636

    Article  Google Scholar 

  73. Li YK, Yang Y (2020) Study on three dimensional flow heat transfer characteristics of amorphous thin strip molten pool prepared by PFC. Hot Work Technol 49(17):57–61. https://doi.org/10.14158/j.cnki.1001-3814.20200538

    Article  Google Scholar 

  74. Sowjanya M, Reddy TKK (2014) Cooling wheel features and amorphous ribbon formation during planar flow melt spinning process. J Mater Process Technol 214(9):1861–1870. https://doi.org/10.1016/j.jmatprotec.2014.04.004

    Article  Google Scholar 

  75. Seino R, Sato Y (2014) Observation of melt puddle behavior in planar flow casting in air. J Alloy Compd 586:S150–S152. https://doi.org/10.1016/j.jallcom.2013.04.189

    Article  Google Scholar 

  76. Theisen EA, Davis MJ, Weinstein SJ, Steen PN (2010) Transient behavior of the planar-flow melt spinning process. Chem Eng Sci 65(10):3249–3259. https://doi.org/10.1016/j.ces.2010.02.018

    Article  Google Scholar 

  77. Wang GX, Matthys EF (2002) Mathematical simulation of melt flow, heat transfer and non-equilibrium solidification in planar flow casting. Modell Simul Mater Sci Eng 10(1):35–55. https://doi.org/10.1088/0965-0393/10/1/304

    Article  Google Scholar 

  78. Su YG, Chen FL, Wu CY, Chang MH (2016) Effect of surface roughness of chill wheel on ribbon formation in the planar flow casting process. J Mater Process Technol 229:609–613. https://doi.org/10.1016/j.jmatprotec.2015.10.014

    Article  Google Scholar 

  79. Carpenter JK, Steen PH (1997) Heat transfer and solidification in planar-flow melt-spinning: high wheelspeeds. Int J Heat Mass Transf 40(9):1993–2007. https://doi.org/10.1016/S0017-9310(96)00305-5

    Article  Google Scholar 

  80. Hui XD, Yang YS, Chen XM, Hu ZQ (1999) Numerical simulation of heat transfer and fluid flow during preparing amorphous alloys by single-roll spinning. Acta Metall Sin 35(11):1206-1210. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh9xnravGjyc03ewReq3Lg7BzGYhfRY-V-f50x9uLipgwRa3oxlyg--hGtHdZtjfbMwBtdO2F8mrRcnU6EO34n2MsfdtcMQ1tQC1F03qOwKysdNHMvgVzRYB&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  81. Madireddi S (2020) Effect of offset of the crucible center with wheel center during planar-flow-melt-spinning process. Mater Today: Proceedings 38:2532–2536. https://doi.org/10.1016/j.matpr.2020.07.550

    Article  Google Scholar 

  82. Majumdar B, Sowjanya M, Srinivas M, Babu DA, Reddy TKK (2012) Issues on puddle formation during rapid solidification of Fe-Si-B-Nb-Cu alloy using planar flow melt spinning process. Trans Indian Inst Met 65(6):841–847. https://doi.org/10.1007/s12666-012-0225-7

    Article  Google Scholar 

  83. Liu HP, Chen WZ, Qiu ST, Liu GD (2009) Numerical simulation of initial development of fluid flow and heat transfer in planar flow casting process. Metall Mater Transact 40(3):411–429. https://doi.org/10.1007/s11663-009-9236-0

    Article  Google Scholar 

  84. Cwudzinski A (2018) Hydrodynamic effects created by argon stirring liquid steel in a one-strand tundish. Ironmak Steelmak 45(6):528–536. https://doi.org/10.1080/03019233.2017.1294357

    Article  Google Scholar 

  85. Dou WX, Yang ZX, Wang ZM, Yue Q (2021) Molten steel flow, heat transfer and inclusion distribution in a single-strand continuous casting tundish with induction heating. Metals 11(10):1536. https://doi.org/10.3390/met11101536

    Article  Google Scholar 

  86. Sheng DY, Windisch C (2022) A simulation-based digital design methodology for studying conjugate heat transfer in tundish. Metals 12(1):1–21. https://doi.org/10.3390/met12010062

    Article  Google Scholar 

  87. Swaroopa M, Gopal LV, Reddy TKK, Majumdar B (2015) Effect of crucible parameters on planar flow melt spinning process. Trans Indian Inst Met 68(6):1125–1129. https://doi.org/10.1007/s12666-015-0657-y

    Article  Google Scholar 

  88. Sun HB, Li LJ (2015) Numerical simulation on flow and heat transfer behaviours during planar flow casting of amorphous alloy Fe78Si9B13 ribbon. J South China Univ Technol (Natural Science Edition) 43(11):67–74. https://doi.org/10.3969/j.issn.1000-565X.2015.11.010

    Article  Google Scholar 

  89. Su YG, Chen FL, Wu CY, Chang MH (2017) Simulation for the effect of wetting conditions of melt puddle on the Fe-Si-B ribbon alloy in the planar-flow melt-spinning process. ISIJ Int 57(1):100–106. https://doi.org/10.2355/isi**ternational.ISIJINT-2016-462

    Article  Google Scholar 

  90. Yamasaki T, Shimada T, Ogino Y (1992) Composition dependence of viscosity of Fe-B-Si liquid alloy. J Japan Inst Metals Mater 56(11):1229–1234. https://doi.org/10.2320/**stmet1952.56.11_1229

    Article  Google Scholar 

  91. Sowjanya M, Reddy TKK, Srivathsa B, Majumdar B (2013) Simulation of initial ribbon formation during planar flow melt spinning process. Appl Mech Mater 446–447:352–355. https://doi.org/10.4028/www.scientific.net/AMM.446-447.352

  92. Li YK, Yang Y (2016) The cooling rate of amorphous ribbons calculation and numerical simulation. 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, 2016 1260–1264. https://doi.org/10.1109/CompComm.2016.7924906

  93. Qiu H, Liu Y, Liu HP (2018) Numerical simulation of airflow boundary layer affecting puddle behavior during planar flow casting process of amorphous strip. Hot Work Technol 47(5):88–92+95. https://doi.org/10.14158/j.cnki.1001-3814.2018.05.021

    Article  Google Scholar 

  94. Srinivas M, Majumdar B, Phanikumar G, Akhtar D (2011) Effect of planar flow melt spinning parameters on ribbon formation in soft magnetic Fe68.5Si18.5B9Nb3Cu1 alloy. Metall Mater Transact B 42(2):370–379. https://doi.org/10.1007/s11663-011-9476-7

    Article  Google Scholar 

  95. Pan LP, He Z, Li BK, Zhou K, Sun K (2017) Temperature distribution and thermal deformation of the crystallization roller based on the direct thermal-structural coupling method. JOM 69(3):604–610. https://doi.org/10.1007/s11837-016-2224-3

    Article  Google Scholar 

  96. Li YK, Yang Y, Song YM, Zhang FR (2017) Numerical simulation of flow and heat transfer for cooling roller in amorphous spinning process. Adv Mater Res 1142:276–281. https://doi.org/10.4028/www.scientific.net/AMR.1142.276

    Article  Google Scholar 

  97. Guo X, Yan M (2015) Thermal analysis for cooling rolls in planar-flow melt spinning. Rare Metal Materials and Engineering 44(8):2048–2052. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh_n-UWhOlorsj1RWwPhAqT8Z-vZVTHajH7r_P9Uw1HK4WRL2XPlJOxSkjq936nHI_FUf4ERK4ncINYi3qvuWQmwoE5jdciLIMJHOH76kjvbDf9LIZ5h1Riwk21cHiLXLFI=&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  98. Li YK, Yang Y, He CY (2018) Temperature and thermal expansion analysis of the cooling roller based on the variable heat flux boundary condition. JOM 70(6):855–860. https://doi.org/10.1007/s11837-018-2853-9

    Article  Google Scholar 

  99. Lai B, Li YF, Wang HJ, Li AH, Zhu MG, Li W, Zhang Y (2014) Model of temperature field for the preparation process of melt-spun NdFeB powders. J Rare Earths 32(6):514–520. https://doi.org/10.1016/S1002-0721(14)60101-0

    Article  Google Scholar 

  100. Zhang JM, Zhang L, Wang XH, Wang LF (2003) Study of heat flux distribution in continuous casting mold. Acta Metallurgica Sinica 39(12):1285–1290. https://kns.cnki.net/kcms2/article/abstract?v=5DzVwdTmeh-p5v3F9GcuMWS_6yyTRXhOz2tyCmEo5lXYzt9A5z79AOvewitwKdIetjDhO2wsW9XRDD4dSbptMqMgpnlWyFQ1v5Z-7n65KL5TUyidP3yeuR8etXOtaW5M&uniplatform=NZKPT&language=CHS. Accessed 12-08-2023

  101. Lavernia EJ, Srivatsan TS (2010) The rapid solidification processing of materials: science, principles, technology, advances, and applications. J Mater Sci 45(2):287–325. https://doi.org/10.1007/s10853-009-3995-5

    Article  Google Scholar 

  102. Byrne CJ, Kueck AM, Baker SP, Steen PH (2006) In situ manipulation of cooling rates during planar-flow melt spinning processing. Mater Sci Eng, A 459(1):172–181. https://doi.org/10.1016/j.msea.2006.12.123

    Article  Google Scholar 

  103. Kramer MJ, Mecco H, Dennis KW, Vargonova E, McCallum RW, Napolitano RE (2007) Rapid solidification and metallic glass formation-Experimental and theoretical limits. J Non-Cryst Solids 353(32–40):3633–3639. https://doi.org/10.1016/j.jnoncrysol.2007.05.172

    Article  Google Scholar 

  104. Bichi AB, Smith WR, Wissink JG (2008) Solidification and downstream meniscus prediction in the planar-flow spin casting process. Chem Eng Sci 63(3):685–695. https://doi.org/10.1016/j.ces.2007.10.003

    Article  Google Scholar 

  105. Ansys I (2019) Ansys fluent theory guide Version. RANSYS Inc., Canonsburg, pp 193–195

    Google Scholar 

Download references

Funding

This research work was financially supported by the National Key Research and Development Plan of China (No. 2022YFB3504600).

Author information

Authors and Affiliations

Authors

Contributions

HZ: conceptualization, methodology, investigation, data curation, and writing—original draft; YC: conceptualization, methodology, supervision, and funding acquisition; XL: data curation and writing—review and editing; WZ: investigation and data curation; YF: methodology; SY: data curation and writing—review and editing; QH: investigation and funding acquisition; XY: supervision and project administration.

Corresponding author

Correspondence to Ying Chang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Chang, Y., Li, X. et al. Numerical simulation studies of jet rapid solidification technology for magnetic materials: a review. Int J Adv Manuf Technol 130, 2065–2083 (2024). https://doi.org/10.1007/s00170-023-12787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12787-y

Keywords

Navigation