Log in

Study on the unstable crack propagation mechanism in turning machinable ceramics based on the energy conversion principle and the fracture mechanics theory

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Through machinable ceramic turning tests, the crack propagation at the machined surface and subsurface is explored, and the mechanism of unstable propagation is studied. The arrangement of the grains affects the direction of crack propagation, and the instability deflection angle (IDA) has a positive correlation with the instability deflection length (IDL). Crack propagation occurs in four stages: initial crack formation stage, metastable propagation stage, unstable propagation stage, and upward propagation stage. Based on the energy conversion principle and the fracture mechanics theory, a binary model of unstable crack propagation is developed. The IDA and IDL are quantified together with their positive correlation and accuracy. The experimental validation results reveal that the theoretical values of the IDA and IDL approach the experimental values, indicating that the model is accurate and may be utilized as a theoretical basis for forecasting the unstable crack propagation behavior in brittle material cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

a p :

Cutting depth (mm)

b D :

Cutting layer width (μm)

c :

Instability deflection length (μm)

c M :

Total length of the crack at the initial crack formation stage and metastable propagation stage (μm)

E :

Elastic modulus (GPa)

F :

Tensile force when the stress at the crack tip reaches the breaking strength (N)

F c :

Main cutting force (N)

F c 1 :

Component force of the cutting movement direction on the rake face (N)

F f :

Axial thrust force (N)

F n :

Elastic reaction force on the flank face (N)

F p :

Radial thrust force (N)

F p 1 :

Component force perpendicular to the work plane on the rake face (N)

F rake :

The vector sum of Fs and fF (N)

F s :

Shear force (N)

f :

Feed rate (mm/rev)

f B :

Frictional force on the flank face (N)

f F :

Frictional force on the rake face (N)

H :

Hardness (GPa)

h c :

Crack propagation depth (μm)

h D :

Thickness of cutting layer (μm)

h s :

Elastic recovery height (μm)

K I :

Stress-intensity factor of mode I (MPa·m1/2)

K IC :

Fracture toughness (MPa·m1/2)

k 1 :

Constant fitted to the measured value

k 2 :

Constant

k 3 :

Constant

L c :

Transverse displacement of the crack propagation before instability (μm)

L s :

Elastic recovery length (μm)

r β :

Rounded cutting edge radius (μm)

r ε :

Corner radius (μm)

S :

Crack surface area (μm2)

U c :

Brittle fracture energy for the formation of powdery tiny chips (J)

U E :

Strain energy during the unstable crack propagation (J)

U K :

Kinetic energy during unstable crack propagation (J)

U S :

Surface energy of crack propagation (J)

u e :

Strain-energy density (J/μm3)

V :

Volume of the removed material (μm3)

V e :

Deformation volume under the triaxial stress state (μm3)

v c :

Cutting speed (m/min)

v fF :

Chip speed (m/min)

v lim :

Terminal velocity of crack propagation (m/min)

W :

The energy input from the tool during the unstable crack propagation (J)

W c :

The work done by the main cutting force (J)

W fB :

Frictional work between the workpiece and the tool flank face (J)

W fF :

Frictional work between the workpiece and the tool rake face (J)

α :

Specimen geometry edge correction factor

α 0 :

Clearance angle (°)

β :

Frictional angle (°)

γ :

Surface energy per unit area (J/m2)

γ 0 :

Tool rake angle (°)

δ :

Initial crack angle (°)

θ :

Instability deflection angle (°)

κ r :

Cutting edge angle (°)

λ s :

Cutting-edge inclination angle (°)

μ :

Coefficient of friction

υ :

Poisson’s ratio

ρ :

Density (g/cm3)

σ c :

Breaking strength (MPa)

σ s :

Elastic recovery stress on the freshly machined surface (MPa)

σ yy :

Tensile stress perpendicular to the crack propagation direction (MPa)

σ 1 :

Triaxial stress corresponding to the component force Fc1 (MPa)

σ 2 :

Triaxial stress corresponding to the component force Fp1 (MPa)

σ 3 :

Triaxial stress corresponding to the component force Ff (MPa)

φ :

Shear angle (°)

References

  1. Ma L, He P, Deng H, Liu T, Tan Y, Zhou Y (2019) Theoretical model of characteristic temperature and continuous fracture mechanism of brittle material in the process of turning fluorophlogopite ceramics. Ceram Int 45:12521–12527. https://doi.org/10.1016/j.ceramint.2019.03.189

    Article  Google Scholar 

  2. Ma L, Yu A, Chen J (2017) Theoretical model of cutting force in turning the lithium disilicate glass-ceramic. Int J Adv Manuf Technol 92:4355–4366. https://doi.org/10.1007/s00170-017-0499-3

    Article  Google Scholar 

  3. Li L, Wan L, Zhou Q (2020) Crack propagation during Vickers indentation of zirconia ceramics. Ceram Int 46:21311–21318. https://doi.org/10.1016/j.ceramint.2020.05.225

    Article  Google Scholar 

  4. Klein AK, Hammler J, Balocco C, Gallant AJ (2018) Machinable ceramic for high performance and compact THz optical components. Opt Mater Express 8:1968. https://doi.org/10.1364/OME.8.001968

    Article  Google Scholar 

  5. Ma L, Cai C, Tan Y, Gong Y, Zhu L (2019) Theoretical model of transverse and longitudinal surface roughness and study on brittle-ductile transition mechanism for turning fluorophlogopite ceramic. Int J Mech Sci 150:715–726. https://doi.org/10.1016/j.ijmecsci.2018.10.059

    Article  Google Scholar 

  6. Lawn B, Wilshaw R (1975) Indentation fracture: principles and applications. J Mater Sci 10:1049–1081. https://doi.org/10.1007/BF00823224

    Article  Google Scholar 

  7. Olagnon C, Chevalier J, Pauchard V (2006) Global description of crack propagation in ceramics. J Eur Ceram Soc 26:3051–3059. https://doi.org/10.1016/j.jeurceramsoc.2005.11.004

    Article  Google Scholar 

  8. Liu H, **e W, Sun Y, Zhu X, Wang M (2018) Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. Int J Adv Manuf Technol 95:317–326. https://doi.org/10.1007/s00170-017-1108-1

    Article  Google Scholar 

  9. Liu J, Jiang G (2021) Use of laboratory indentation tests to study the surface crack propagation caused by various indenters. Eng Fract Mech 241:107421. https://doi.org/10.1016/j.engfracmech.2020.107421

    Article  Google Scholar 

  10. Schulz BC, Lee H, Mogilevsky P, Weinberger CR, Parthasarathy TA, Matson LE, Smith C, Thompson GB (2017) Experimental investigation into the crack propagation in multiphase tantalum carbide ceramics. Mat Sci Eng A-Struct 695:315–321. https://doi.org/10.1016/j.msea.2017.04.043

    Article  Google Scholar 

  11. Qiu Z, Liu C, Wang H, Yang X, Fang F, Tang J (2016) Crack propagation and the material removal mechanism of glass–ceramics by the scratch test. J Mech Behav Biomed Mater 64:75–85. https://doi.org/10.1016/j.jmbbm.2016.07.021

    Article  Google Scholar 

  12. Feng J, Wan Z, Wang W, Huang X, Ding X, Jiang Z (2020) Scratch with double-tip tool: crack behavior during simultaneous double scratch on bk7 glass. J Eur Ceram Soc 40:4202–4216. https://doi.org/10.1016/j.jeurceramsoc.2020.04.008

    Article  Google Scholar 

  13. Zhu D, Song S, Qu C, Lv Y, Wu C (2020) Numerical investigation of crack initiation, propagation and suppression in robot-assisted abrasive belt grinding of zirconia ceramics via an improved chip-thickness model. Ceram Int 46:22030–22039. https://doi.org/10.1016/j.ceramint.2020.05.199

    Article  Google Scholar 

  14. Zhang Z, Wang X, Meng F, Liu D, Huang S, Cui J, Wang J, Wen W (2022) Origin and evolution of a crack in silicon induced by a single grain grinding. J Manuf Process 75:617–626. https://doi.org/10.1016/j.jmapro.2022.01.037

    Article  Google Scholar 

  15. Li C, Li X, Wu Y, Zhang F, Huang H (2019) Deformation mechanism and force modelling of the grinding of YAG single crystals. Int J Mach Tool Manu 143:23–37. https://doi.org/10.1016/j.ijmachtools.2019.05.003

    Article  Google Scholar 

  16. Wang J, Ding W, Zhu Y, Fu Y (2019) Micro-fracture variation and grinding performance of PCBN superabrasive grains in high-speed grinding. Int J Mech Sci 160:15–25. https://doi.org/10.1016/j.ijmecsci.2019.06.021

    Article  Google Scholar 

  17. Esmaeilzare A, Rahimi A, Rezaei SM (2014) Investigation of subsurface damages and surface roughness in grinding process of Zerodur® glass–ceramic. Appl Surf Sci 313:67–75. https://doi.org/10.1016/j.apsusc.2014.05.137

    Article  Google Scholar 

  18. Tang L, Gao C, Shen H, Lin X, Zhang L (2018) Mechanism of the crack propagation in the chip root in dry hard orthogonal turning of the hardened steel. Int J Mech Sci 138–139:272–281. https://doi.org/10.1016/j.ijmecsci.2018.02.020

    Article  Google Scholar 

  19. Ma L, Cai C, Bi C (2018) Theoretical model of crack propagation behavior and fracture chip formation mechanism during turning of fluorophlogopite ceramic. Int J Adv Manuf Technol 99:2585–2596. https://doi.org/10.1007/s00170-018-2579-4

    Article  Google Scholar 

  20. Huang W, Yu D, Zhang X, Zhang M, Chen D (2018) Ductile-regime machining model for ultrasonic elliptical vibration cutting of brittle materials. J Manuf Process 36:68–76. https://doi.org/10.1016/j.jmapro.2018.09.029

    Article  Google Scholar 

  21. Yao Z, Gu W, Li K (2012) Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7. J Mater Process Technol 212:969–976. https://doi.org/10.1016/j.jmatprotec.2011.12.007

    Article  Google Scholar 

  22. Luo J, Wang H, ** C, Zhai H, Gu Y, Zhang C (2021) Indentation size effect–crack propagation model and finite element simulation verification for microhardness test of ceramic materials. Ceram Int 47:4914–4924. https://doi.org/10.1016/j.ceramint.2020.10.064

    Article  Google Scholar 

  23. Chen M, Wang H, ** H, Pan X, ** Z (2016) Effect of pores on crack propagation behavior for porous Si3N4 ceramics. Ceram Int 42:5642–5649. https://doi.org/10.1016/j.ceramint.2015.12.086

    Article  Google Scholar 

  24. Zhu D, Yan S, Li B (2014) Single-grit modeling and simulation of crack initiation and propagation in SIC grinding using maximum undeformed chip thickness. Comput Mater Sci 92:13–21. https://doi.org/10.1016/j.commatsci.2014.05.019

    Article  Google Scholar 

  25. Sun Y, ** L, Gong Y, Wen X, Yin G, Wen Q, Tang B (2022) Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process 73:799–814. https://doi.org/10.1016/j.jmapro.2021.11.049

    Article  Google Scholar 

  26. Li C, Piao Y, Meng B, Hu Y, Li L, Zhang F (2022) Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int J Mach Tool Manu 172:103827. https://doi.org/10.1016/j.ijmachtools.2021.103827

    Article  Google Scholar 

  27. Liu Q, Liao Z, Axinte D (2020) Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int J Mach Tool Manu 159:103620. https://doi.org/10.1016/j.ijmachtools.2020.103620

    Article  Google Scholar 

  28. Yonezu A, Hara T, Kondo T, Hirakata H, Minoshima K (2012) Evaluation of threshold stress intensity factor of hydrogen embrittlement cracking by indentation testing. Mat Sci Eng A-Struct 531:147–154. https://doi.org/10.1016/j.msea.2011.10.049

    Article  Google Scholar 

  29. Yoon H, Kwon SB, Nagaraj A, Min S (2020) Effect of the initial-flaw on crack-propagation in two-step cutting of monocrystalline sapphire. J Manuf Process 56:1211–1218. https://doi.org/10.1016/j.jmapro.2020.06.017

    Article  Google Scholar 

  30. Weng H, Ampuero J (2020) Continuum of earthquake rupture speeds enabled by oblique slip. Nat Geosci 13:817–821. https://doi.org/10.1038/s41561-020-00654-4

    Article  Google Scholar 

  31. Wang Y, Deng H, Deng Y, Chen K, He J (2021) Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location. J Pet Sci Eng 201:108420. https://doi.org/10.1016/j.petrol.2021.108420

    Article  Google Scholar 

  32. Hao X, Du W, Zhao Y, Sun Z, Zhang Q, Wang S, Qiao H (2020) Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. Int J Min Sci Technol 30:659–668. https://doi.org/10.1016/j.ijmst.2020.06.007

    Article  Google Scholar 

  33. Hassan M, Sadek A, Damir A, Attia MH, Thomson V (2018) A novel approach for real-time prediction and prevention of tool chip** in intermittent turning machining. Cirp Ann-Manuf Techn 67:41–44. https://doi.org/10.1016/j.cirp.2018.04.065

    Article  Google Scholar 

  34. Yashiro K (2017) Local lattice instability analysis on mode I crack tip in hcp-Mg: unstable mode for crack propagation vs. dislocation emission. Comp Mater Sci 131:220–229. https://doi.org/10.1016/j.commatsci.2017.02.004

    Article  Google Scholar 

  35. Huang K, Sumigawa T, Guo L, Yan Y, Kitamura T (2018) Unstable cracking behavior in nanoscale single crystal silicon: initiation, unstable propagation and arrest. Eng Fract Mech 196:113–122. https://doi.org/10.1016/j.engfracmech.2018.04.014

    Article  Google Scholar 

  36. Zhou Y, **ao Y, Wu Q, Xue Y (2021) A multi-state progressive cohesive law for the prediction of unstable propagation and arrest of mode-I delamination cracks in composite laminates. Eng Fract Mech 248:107684. https://doi.org/10.1016/j.engfracmech.2021.107684

    Article  Google Scholar 

  37. Xu L, Wang Q, Zhou M (2018) Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue. Mat Sci Eng A-Struct 715:404–413. https://doi.org/10.1016/j.msea.2018.01.008

    Article  Google Scholar 

  38. Wang D, Wang Q, Wang Z, Jiang H, Zhang Z, Liu P, Xu C, Gao L (2019) Study on the long-term behaviour of glass fibre in the tensile stress field. Ceram Int 45:11578–11583. https://doi.org/10.1016/j.ceramint.2019.03.028

    Article  Google Scholar 

  39. Kulkarni AK, Dalvi PY, Mirza T, Patil BA (1991) Development of mica based machinable ceramics. T Indian Ceram Soc 50:124–128. https://doi.org/10.1080/0371750X.1991.10804506

    Article  Google Scholar 

  40. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364. https://doi.org/10.1115/1.4011547

    Article  Google Scholar 

  41. Arcona C, Dow T (1998) An empirical tool force model for precision machining. J Manuf Sci Eng 20(4):700–707. https://doi.org/10.1115/1.2830209

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51975113).

Author information

Authors and Affiliations

Authors

Contributions

**g Jia: conceptualization, methodology, software, experiment, writing—original draft, writing—review and editing. Lianjie Ma: supervision, writing—review and editing, funding acquisition, resources. Wenhao Du: software, investigation. Yang Sun: validation. Chunyu Dai: investigation. Yanqing Tan: supervision. Yunguang Zhou: supervision, experiment.

Corresponding author

Correspondence to Lianjie Ma.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Consent.

Consent for publication

Consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Ma, L., Du, W. et al. Study on the unstable crack propagation mechanism in turning machinable ceramics based on the energy conversion principle and the fracture mechanics theory. Int J Adv Manuf Technol 127, 4591–4606 (2023). https://doi.org/10.1007/s00170-023-11817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11817-z

Keywords

Navigation