Log in

Research on surface integrity and its influencing factors in the high-speed cutting of typical aluminum/titanium/nickel alloys: a review

  • Technical Note
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article mainly discusses high-speed milling of aluminum/titanium/nickel alloys (common materials in the aerospace field, such as 7075-T6 aluminum, Ti6Al4V, Inconel 718). The workpiece’s surface integrity significantly impacts the part’s fatigue life, material properties (wear resistance, corrosion resistance, etc.), and tool life. Improving the surface integrity of the workpiece effectively has always been a challenging problem in the manufacturing field. This article comprehensively reviews the factors that influence surface integrity in machining, including tool geometry parameters, workpiece material (elements, microstructure)/shape, cutting environment, cutting vibration, and tool wear. The article also summarizes various methods for improving surface integrity, such as cutting path planning, cutting vibration suppression, and tool wear monitoring. The article analyzes the characteristics of surface integrity in machining related to workpiece material, including surface morphology (surface roughness, waviness, scallop height, surface defects), microstructure modification (such as plastic deformation, grain size, and white layer), and mechanical properties (microhardness, residual stress). Current research progress shows that the study of the influence of cutting parameters on surface integrity in machining is mainly based on experimental data, which deeply analyzes the correlation between the two. However, there is a lack of systematic modeling methods for the relationship between cutting parameters, physical parameters during cutting (mechanical load, thermal load), and surface integrity characteristics. Due to the importance of establishing a map** relationship between cutting parameters, surface integrity, and component fatigue life, when studying the influence of cutting parameters on surface integrity characteristics, it is necessary to consider the final component’s fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Bhopale NN, Pawade RS, Joshi SS (2017) Surface quality analysis in ball end milling of Inconel 718 cantilevers by response surface methodology. Proc Inst Mech Eng Part B J Eng Manuf 231(4):628–640. https://doi.org/10.1177/0954405415600140

    Article  Google Scholar 

  2. Wang FZ, Zhao J, Li AH, Zhao JB  (2013) Cutting forces and surface roughness in high-speed end milling of Ti6Al4V. In: 12th Conference on Machining and Advanced Manufacturing Technology, **amen, Peoples R China. pp  76–81. https://doi.org/10.4028/www.scientific.net/KEM.589-590.76

  3. Wang ZH, Yuan JT, Huang J (2011) Study on surface roughness in high-speed milling for ALMn1Cu. In: International Conference on Mechatronics and Applied Mechanics, Hong Kong, PEOPLES R CHINA, 2011. pp  636-640. https://doi.org/10.4028/www.scientific.net/AMM.157-158.636

  4. Zhao ZY, Huang LX, **ao YS, Liu B  (2010) Research on NC technology for high speed milling. In: International Conference on Frontiers of Manufacturing and Design Science, Chongqing, Peoples R China, 2010. pp  280. https://doi.org/10.4028/www.scientific.net/AMM.44-47.280

  5. van Dijk NJM, Doppenberg EJJ, Faassen RPH, van de Wouw N, Oosterling JAJ, Nijmeijer H (2010) Automatic in-process chatter avoidance in the high-speed milling process. J Dyn Syst Meas Control 132(3). https://doi.org/10.1115/1.4000821

  6. Aspinwall A  (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol. https://doi.org/10.1016/S0924-0136(97)00204-5

  7. Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77(1–3):278–284. https://doi.org/10.1016/S0924-0136(97)00429-9

    Article  Google Scholar 

  8. Moussaoui K, Mousseigne M, Senatore J, Chieragatti R (2015) The effect of roughness and residual stresses on fatigue life time of an alloy of titanium. Int J Adv Manuf Technol 78(1–4):557–563. https://doi.org/10.1007/s00170-014-6596-7

    Article  Google Scholar 

  9. Sharman ARC (2001) The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide. Int J Machine Tools Manuf 41(11):1681–1685. https://doi.org/10.1016/S0890-6955(01)00034-7

    Article  Google Scholar 

  10. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54. https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  11. Chen S, Zhao W, Yan P, Qiu T, Gu H, Jiao L, Wang X (2022) Effect of milling surface topography and texture direction on fatigue behavior of ZK61M magnesium alloy. Int J Fatigue 156:11. https://doi.org/10.1016/j.ijfatigue.2021.106669

    Article  Google Scholar 

  12. Dong W, Sullivan P, Stout K (1994) Comprehensive study of parameters for characterising three-dimensional surface topography: III: parameters for characterising amplitude and some functional properties. Wear 178(1–2):29–43. https://doi.org/10.1016/0043-1648(94)90127-9

    Article  Google Scholar 

  13. Zhang W, Bai FS, Zhao SH, Zhang L, Wang B, Feng RY (2021) Analysis of the texture direction of the milled surface on the wear resistance of the workpiece. Surf Topogr Metrol Prop 9(3):035044. https://doi.org/10.1088/2051-672X/ac2565

    Article  Google Scholar 

  14. Taylor D, Clancy OM (1991) The fatigue performance of machined surfaces. Fatigue Fract Eng Mater Struct 14(2–3):329–336. https://doi.org/10.1111/j.1460-2695.1991.tb00662.x

    Article  Google Scholar 

  15. Schreck S, Gahr K (2005) Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties. Appl Surf Sci 247:616–622. https://doi.org/10.1016/j.apsusc.2005.01.173

    Article  Google Scholar 

  16. Sadeghi M, Kharaziha M, Salimijazi HR, Tabesh E (2019) Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf Coat Technol 362:282–292. https://doi.org/10.1016/j.surfcoat.2019.01.113

    Article  Google Scholar 

  17. Wang C, Huang H, Zhang ZY, Zhang L, Yan JW, Ren LQ (2022) Formation, evolution and characterization of nanoporous structures on the Ti6Al4V surface induced by nanosecond pulse laser irradiation. Mater Design 223:111243. https://doi.org/10.1016/j.matdes.2022.111243

    Article  Google Scholar 

  18. Yao Y-t (2021) Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. J Mater Sci Mater Med 3–11. https://doi.org/10.1007/s10856-021-06548-0

  19. Sheng Z, Wei Q, Cheng L, Suo L, Shi Y (2014) Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Materials Design 63:185–193. https://doi.org/10.1016/j.matdes.2014.05.021

    Article  Google Scholar 

  20. Su Y, Komasa S, Sekino T, Nishizaki H, Okazaki J (2016) Nanostructured Ti6Al4V alloy fabricated using modified alkali-heat treatment: characterization and cell adhesion. Mater Sci Eng C Mater Biol Appl 59:617–623. https://doi.org/10.1016/j.msec.2015.10.077

    Article  Google Scholar 

  21. Krolczyk GM, Nieslony P, Krolczyk JB, Samardzic I, Legutko S, Hloch S, Barrans S, Maruda RW (2015) Influence of argon pollution on the weld surface morphology. Measurement 70:203–213. https://doi.org/10.1016/j.measurement.2015.04.001

    Article  Google Scholar 

  22. Li W, Guo Y, Guo C (2013) Superior surface integrity by sustainable dry hard milling and impact on fatigue. CIRP Ann Manuf Technol 62(1):567–570. https://doi.org/10.1016/j.cirp.2013.03.024

    Article  Google Scholar 

  23. Chang HB, Li SY, Shi RP, (2016) Design and manufacturing technology of high speed milling cutter for aluminum alloy. In: 13th Global Congress on Manufacturing and Management, Zhengzhou Univ, Zhengzhou, Peoples R China. pp 630–637. https://doi.org/10.1016/j.proeng.2017.01.200

  24. Zeng Z (2010) Mechanical engineering materials manual: metallic materials. Mechanical Industry Press

  25. Leyens C, Peters M (2003) Titanium and titanium alloys, Titanium and titanium alloys - fundamentals and applications.

  26. Wang B, Liu ZQ (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98(5–8):1925–1975. https://doi.org/10.1007/s00170-018-2314-1

    Article  Google Scholar 

  27. Panin PV, Lukina EA (2020) Machinability assessment of beta-solidifying TiAl-based alloy with Zr, Cr, and Gd content variability, Materials today: proceedings. https://doi.org/10.1016/j.matpr.2020.08.233

  28. Fu T, YuQX ,Pang SQ (2006) Study and application on CVD diamond tools, Advances in Machining & Manufacturing Technology Viii2006. pp 720-724. https://doi.org/10.4028/www.scientific.net/KEM.315-316.720

  29. Ayas E, Kara A  (2004) Pressureless sintering of Al2O3-TiCN composites, Euro Ceramics Viii, Pts 1-32004. pp  849-852. https://doi.org/10.4028/10.4028/www.scientific.net/KEM.264-268.849

  30. Shalaby MA, El Hakim MA, Abdelhameed MM, Krzanowski JE, Veldhuis SC, Dosbaeva GK (2014) Wear mechanisms of several cutting tool materials in hard turning of high carbon-chromium tool steel. Tribol Int 70:148–154. https://doi.org/10.1016/j.triboint.2013.10.011

    Article  Google Scholar 

  31. Poulachon G, Moisan A, Jawahir IS (2001) Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools. Elsevier B.V. pp  576–586.

  32. Desai KA, Rao PVM (2008) Effect of direction of parameterization on cutting forces and surface error in machining curved geometries. Int J Mach Tools Manuf 48(2):249–259. https://doi.org/10.1016/j.ijmachtools.2007.08.007

    Article  Google Scholar 

  33. Tsao CC (2008) Cutting performance and predictive models for end milling aluminum alloy. In: International Conference on Advances in Materials and Processing Technologies, Manama, BAHRAIN, 2008. pp 646-653. https://doi.org/10.4028/www.scientific.net/AMR.83-86.646

  34. Sur G, Motorcu AR, Nohutcu S (2022) Single and multi-objective optimization for cutting force and surface roughness in peripheral milling of Ti6Al4V using fixed and variable helix angle tools. J Manuf Process 80:529–545. https://doi.org/10.1016/j.jmapro.2022.06.016

    Article  Google Scholar 

  35. Petru J (2022) Statistical analysis of machining parameters on burr formation, surface roughness and energy consumption during milling of aluminium alloy Al 6061–T6. Materials 15:8065. https://doi.org/10.3390/ma15228065

    Article  Google Scholar 

  36. Yang SC, He CS, Zheng ML (2019) A prediction model for titanium alloy surface roughness when milling with micro-textured ball-end cutters at different workpiece inclination angles. Int J Adv Manuf Technol 100(5–8):2115–2122. https://doi.org/10.1007/s00170-018-2852-6

    Article  Google Scholar 

  37. Tong X, Yu S (2020) Influence of micro-textured parameters on cutting performance and chip formation of milling Ti6Al4V. J Mech Sci Technol 34(9):3767–3774. https://doi.org/10.1007/s12206-020-0828-9

    Article  Google Scholar 

  38. Zhang KD, Deng JX, Meng R, Gao P, Yue HZ (2015) Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting. Int J Refract Met Hard Mater 51:35–49. https://doi.org/10.1016/j.ijrmhm.2015.02.011

    Article  Google Scholar 

  39. Aslantas K, Alatrushi LKH, Bedir F, Kaynak Y, Yilmaz N (2020) An experimental analysis of minimum chip thickness in micro-milling of two different titanium alloys. Proc Inst Mech Eng Part B J Eng Manuf 234(12):1486–1498. https://doi.org/10.1177/0954405420933098

    Article  Google Scholar 

  40. Campos FD, Araujo AC, Munhoz ALJ, Kapoor SG (2020) The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: a comparison of SLM and commercial workpieces. J Manuf Process 60:299–307. https://doi.org/10.1016/j.jmapro.2020.10.006

    Article  Google Scholar 

  41. Ni CB, Zhu LD, Zheng ZP, Zhang JY, Yang Y, Hong RC, Bai YC, Lu WF, Wang H (2020) Effects of machining surface and laser beam scanning strategy on machinability of selective laser melted Ti6Al4V alloy in milling. Mater Design 194:108880. https://doi.org/10.1016/j.matdes.2020.108880

    Article  Google Scholar 

  42. Li C, Duan CZ, Chang BB (2022) Instantaneous cutting force model considering the material structural characteristics and dynamic variations in the entry and exit angles during end milling of the aluminum honeycomb core. Mech Syst Signal Process 181:109456. https://doi.org/10.1016/j.ymssp.2022.109456

    Article  Google Scholar 

  43. Zarrouk T, Salhi JE, Nouari M, Salhi M, Chaabelasri E, Makich H, Salhi N (2022) Modeling machining of aluminum honeycomb structure. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10350-9

  44. Ma JW, Hu GQ, Jia ZY, Zhang N, Wang FJ (2018) Effect of geometric feature and cutting direction on variation of force and vibration in high-speed milling of TC4 curved surface. Int J Adv Manuf Technol 95:2207–2218. https://doi.org/10.1007/s00170-017-1388-5

    Article  Google Scholar 

  45. Daymi A, Boujelbene M, Ben Amara A, Bayraktar E, Katundi D (2011) Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V. Mater Sci Technol 27(1):387–394. https://doi.org/10.1179/026708310x12738371692932

    Article  Google Scholar 

  46. Hu D, Guo J (2018) Tool path optimization algorithm of spatial cam flank milling based on NURBS surface. J Braz Soc Mech Sci Eng 40(4):1–8. https://doi.org/10.1007/s40430-018-1092-x

    Article  Google Scholar 

  47. Jacso A, Matyasi G, Szalay T (2019) The fast constant engagement offsetting method for generating milling tool paths. Int J Adv Manuf Technol 103(9):4293–4305. https://doi.org/10.1007/s00170-019-03834-8

    Article  Google Scholar 

  48. Xu J, Geng Z, Sun Y, Li L (2019) Generating gouge-free tool paths for ball-end cutter CNC milling of cloud of point by projecting guide curves. Int J Adv Manuf Technol 102(5):1193–1204. https://doi.org/10.1007/s00170-018-2973-y

    Article  Google Scholar 

  49. Ezair B, Elber G (2018) Automatic generation of globally assured collision free orientations for 5-axis ball-end tool-paths. Comput Aided Des 102:171–181. https://doi.org/10.1016/j.cad.2018.04.011

    Article  Google Scholar 

  50. Wu P, Suzuki H, Kase K (2005) Three-axis NC cutter path generation for subdivision surface with Z-map. Jsme Int J Series C Mech Syst Mach Elements Manuf 48(4):757–762. https://doi.org/10.1299/jsmec.48.757

    Article  Google Scholar 

  51. Ming L, Ce H, Hafeez HM (2019) Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks. Chinese J Aeronautics 32(8):2009–2016. https://doi.org/10.1016/j.cja.2018.09.001

    Article  Google Scholar 

  52. Yuan C, Mi Z, Jia X, Lin F, Shen L (2020) Tool orientation optimization and path planning for 5-axis machining. J Syst Sci Complex 34(1):83–106. https://doi.org/10.1007/s11424-020-9270-1

    Article  Google Scholar 

  53. Wang Q, Feng Y, Gao Y, Li Z, Tan J (2018) Smooth fillet-end cutter tool path generation method on triangular-mesh surface based on modified butterfly subdivision. Int J Adv Manuf Technol 98(9):2831–2847. https://doi.org/10.1007/s00170-018-2463-2

    Article  Google Scholar 

  54. Bo PB, Fan HY, Barton M (2022) Efficient 5-axis CNC trochoidal flank milling of 3D cavities using custom-shaped cutting tools. Comput Aided Des 151:103334. https://doi.org/10.1016/j.cad.2022.103334

    Article  MathSciNet  Google Scholar 

  55. Chuang CM, Yau HT (2005) A new approach to z-level contour machining of triangulated surface models using fillet endmills. Comput Aided Des 37(10):1039–1051. https://doi.org/10.1016/j.cad.2004.10.005

    Article  Google Scholar 

  56. Daniyan I, Mpofu K, Fameso F, Tlhabadira I, Phokobye S (2022) Computer-aided modelling and experimental evaluation of the pocket milling operation for alloy tool steel (AISI D3). Int J Adv Manuf Technol 122(11–12):4453–4466. https://doi.org/10.1007/s00170-022-09979-3

    Article  Google Scholar 

  57. Sap E, Usca UA, Uzun M (2022) Machining and optimization of reinforced copper composites using different cooling-lubrication conditions. J Braz Soc Mech Sci Eng 44(9):399. https://doi.org/10.1007/s40430-022-03678-6

    Article  Google Scholar 

  58. An QL, Cai CY, Zou F, Liang X, Chen M (2020) Tool wear and machined surface characteristics in side milling Ti6Al4V under dry and supercritical CO2 with MQL conditions. Tribol Int 151:106511. https://doi.org/10.1016/j.triboint.2020.106511

    Article  Google Scholar 

  59. Karabulut S, Bilgin M, Karakoc H, Khanna N, Sarikaya M (2022) A study on the influence of thermally assisted novel hybrid methods on the drilling behavior of Ti6Al4V alloy. Tribol Int 175:107852. https://doi.org/10.1016/j.triboint.2022.107852

    Article  Google Scholar 

  60. Karmiris-Obratanski P, Karkalos NE, Kudelski R, Markopoulos AP (2022) Experimental study on the effect of the cooling method on surface topography and workpiece integrity during trochoidal end milling of Incoloy 800. Tribol Int 176:107899. https://doi.org/10.1016/j.triboint.2022.107899

    Article  Google Scholar 

  61. Li GX, Yi S, Li N, Pan WC, Wen CE, Ding SL (2019) Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V. J Mater Process Technol 271:584–598. https://doi.org/10.1016/j.jmatprotec.2019.04.035

    Article  Google Scholar 

  62. Gupta MK, Mia M, Pruncu CI, Khan AM, Rahman MA, Jamil M, Sharma VS (2020) Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: an intelligent approach. J Braz Soc Mech Sci Eng 42(4):1–21. https://doi.org/10.1007/s40430-020-2256-z

    Article  Google Scholar 

  63. Nguyen QM, Do TV (2022) Optimal approaches for hard milling of SKD11 steel under MQL conditions using SIO2 nanoparticles. Adv Mater Sci Eng. 2022. https://doi.org/10.1155/2022/2627522

  64. Ni CB, Zhu LD, Yang ZC (2019) Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti-6Al-4V from dynamic view. Wear 436:203006. https://doi.org/10.1016/j.wear.2019.203006

    Article  Google Scholar 

  65. Saha S, Deb S, Bandyopadhyay PP (2022) Shadow zone in MQL application and its influence on lubricant deficiency and machinability during micro-milling. Int J Mech Sci 220:107181. https://doi.org/10.1016/j.ijmecsci.2022.107181

    Article  Google Scholar 

  66. Yu WW, Chen J, Li YG, Zuo ZY, Chen D, An QL, Chen M, Wang HW (2021) Comprehensive study on the cutting specific energy and surface roughness of milled in situ TiB2/Al composites and Al alloys. Int J Adv Manuf Technol 112(9–10):2717–2729. https://doi.org/10.1007/s00170-020-06478-1

    Article  Google Scholar 

  67. Rong B, Wang DS, Yang YF, Xu HJ, He N (2013) Study on the cutting forces and surface integrity in high speed milling of aluminum-lithium alloy. In: 15th International Manufacturing Conference in China, Nan**g, Peoples R China. pp  64. https://doi.org/10.4028/www.scientific.net/MSF.770.64

  68. Huang PL, Li JF, Sun J, Ge MJ (2012) Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int J Adv Manuf Technol 58(1–4):153–160. https://doi.org/10.1007/s00170-011-3380-9

    Article  Google Scholar 

  69. Li Q, Gong YD, Cai M, Liu MJ (2017) Research on surface integrity in milling Inconel718 superalloy. Int J Adv Manuf Technol 92(1–4):1449–1463. https://doi.org/10.1007/s00170-017-0080-0

    Article  Google Scholar 

  70. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  71. Feng JL, Sun ZL, Jiang ZH, Yang L (2016) Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82(9–12):1909–1920. https://doi.org/10.1007/s00170-015-7509-0

    Article  Google Scholar 

  72. Jiang ZX, Sun J, **ong QC, Wang LM, Li JF (2017) Structural design of groove and micro-blade of the end mill in aluminum alloys machining based on bionics. Int J Adv Manuf Technol 88(9–12):3343–3356. https://doi.org/10.1007/s00170-016-9022-5

    Article  Google Scholar 

  73. Nguyen HT, Wang H, Hu SJ (2014) Modeling cutter tilt and cutter-spindle stiffness for machine condition monitoring in face milling using high-definition surface metrology. Int J Adv Manuf Technol 70(5–8):1323–1335. https://doi.org/10.1007/s00170-013-5347-5

    Article  Google Scholar 

  74. Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47(5):841–851. https://doi.org/10.1016/j.ijmachtools.2006.06.014

    Article  Google Scholar 

  75. Guo ML, Wei ZC, Wang MJ, Li SQ, Wang J, Liu SX (2021) Modal parameter identification of general cutter based on milling stability theory. J Intell Manuf 32(1):221–235. https://doi.org/10.1007/s10845-020-01569-y

    Article  Google Scholar 

  76. Mohammadi Y, Ahmadi K (2018) Frequency domain analysis of regenerative chatter in machine tools with linear time periodic dynamics. Mech Syst Signal Process 120:378–391. https://doi.org/10.1016/j.ymssp.2018.10.029

    Article  Google Scholar 

  77. ** HY, Sun HY, Fu HY, Han ZY (2022) Milling process stability detection for curved workpiece based on MVMD and LSTM. Int J Adv Manuf Technol 123(3–4):1025–1036. https://doi.org/10.1007/s00170-022-10030-8

    Article  Google Scholar 

  78. Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. In: Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2016.01.003

  79. Dun Y, Zhus L, Yan B, Wang S (2021) A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech Syst Signal Process. 158. https://doi.org/10.1016/j.ymssp.2021.107755

  80. Chen D, Zhang X, Zhao H Ding H Development of a novel online chatter monitoring system for flexible milling process. Mech Syst Signal Process. 159. https://doi.org/10.1016/j.ymssp.2021.107799

  81. Yang Y, Yuan JW, Tie D, Wan M, Zhang WH (2023) An efficient and accurate chatter prediction method of milling processes with a transition matrix reduction scheme. Mech Syst Signal Process. 182. https://doi.org/10.1016/j.ymssp.2022.109535

  82. Ji YJ, Wang LY, Song Y, Wang HJ, Liu ZB (2022) Investigation of robotic milling chatter stability prediction under different cutter orientations by an updated full-discretization method. J Sound Vib. 536. https://doi.org/10.1016/j.jsv.2022.117150

  83. Ji Y, Wang X, Liu Z, Wang H, Wang K, Wang D (2019) Stability prediction of five-axis ball-end finishing milling by considering multiple interaction effects between the tool and workpiece. Mech Syst Signal Process 131:261–287. https://doi.org/10.1016/j.ymssp.2019.05.058

    Article  Google Scholar 

  84. Falta J, Sulitka M, Zeman P  An analytical formulation of ZOA-based machining stability for complex tool geometries: application to 5-axis ball-end milling. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10170-x

  85. Ma JJ, Li YF, Zhang DH, Zhao B, Yan XH, Pang XY (2022) Investigation of tool flank wear effect on system stability prediction in the milling of Ti-6AI-4 V thin-walled workpiece. Int J Adv Manuf Technol 122(9–10):3937–3956. https://doi.org/10.1007/s00170-022-10136-z

    Article  Google Scholar 

  86. Yang Y, Zhang WH, Ma YC, Wan M, Dang XB (2019) An efficient decomposition-condensation method for chatter prediction in milling large-scale thin-walled structures. Mech Syst Signal Process 121:58–76. https://doi.org/10.1016/j.ymssp.2018.11.013

    Article  Google Scholar 

  87. Zhan D, Jiang S, Niu J, Sun Y (2020) Dynamics modeling and stability analysis of five-axis ball-end milling system with variable pitch tools. Int J Mech Sci 182:105774. https://doi.org/10.1016/j.ijmecsci.2020.105774

    Article  Google Scholar 

  88. Huang PL, Li JF, Sun J, Zhou J (2013) Study on vibration reduction mechanism of variable pitch end mill and cutting performance in milling titanium alloy. Int J Adv Manuf Technol 67(5–8):1385–1391. https://doi.org/10.1007/s00170-012-4575-4

    Article  Google Scholar 

  89. Zheng ML, Liu YX, Nie WY, Xu SC, Bi YQ Vibration response analysis of thin-walled workpiece considering material removal effects during machining with variable pitch end mill. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10299-9

  90. Nie WY, Zheng ML, Xu SC, Liu YX, Yu HB (2021) Stability analysis and structure optimization of unequal-pitch end mills. Materials 14(22):7003. https://doi.org/10.3390/ma14227003

    Article  Google Scholar 

  91. Sellmeier V, Denkena B (2011) Stable islands in the stability chart of milling processes due to unequal tooth pitch. Int J Mach Tools Manuf 51(2):152–164. https://doi.org/10.1016/j.ijmachtools.2010.09.007

    Article  Google Scholar 

  92. ** G, Qi HJ, Li ZJ, Han JX (2018) Dynamic modeling and stability analysis for the combined milling system with variable pitch cutter and spindle speed variation. Commun Nonlinear Sci Numerical Simul 63:38–56. https://doi.org/10.1016/j.cnsns.2018.03.004

    Article  MathSciNet  MATH  Google Scholar 

  93. Liu GY, Dang JQ, Li C, Chen M (2020) Parametric study on the tool inclination angle for side milling thin-walled workpiece edges based on finite element simulation. Proc Inst Mech Eng Part B J Eng Manuf 234(3):439–452. https://doi.org/10.1177/0954405419876159

    Article  Google Scholar 

  94. Li D, Cao H (2021) Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder. Mech Syst Signal Process 148:16. https://doi.org/10.1016/j.ymssp.2020.107190

    Article  Google Scholar 

  95. Ahmed GMS, Reddy PR, Seetharamaiah N (2012) Experimental investigation of magneto rheological dam** effect on surface roughness of work piece during end milling process. Int J Precis Eng Manuf 13(6):835–844. https://doi.org/10.1007/s12541-012-0109-0

    Article  Google Scholar 

  96. Wan SK, Li XH, Su WJ, Hong J, Milling chatter mitigation with projection-based robust adaptive controller and active magnetic bearing. Int J Precis Eng Manuf.https://doi.org/10.1007/s12541-022-00710-6

  97. Aggogeri F, Al-Bender F, Brunner B, Elsaid M, Mazzola M, Merlo A, Ricciardi D, Rodriguez M, Salvi E (2013) Design of piezo-based AVC system for machine tool applications. Mech Syst Signal Process 36:53–65. https://doi.org/10.1016/j.ymssp.2011.06.012

    Article  Google Scholar 

  98. Chaari R, Haddar M, Djemal F, Chaari F, Haddar M (2019) Passive vibration absorber effect on the machining surface quality of a flexible workpiece. CR Mec 347(12):903–911. https://doi.org/10.1016/j.crme.2019.11.014

    Article  Google Scholar 

  99. Jeelani S, Ramakrishnan K (1983) Subsurface plastic deformation in machining 6Al-2Sn-4Zr-2Mo titanium alloy. Wear 85(1):121–130. https://doi.org/10.1016/0043-1648(83)90340-X

    Article  Google Scholar 

  100. Mativenga PT, Mubashar A (2007) White layer formation and tool wear in high speed milling of 57HRc tool steel using coated and uncoated tools. Int J Agile Syst Manag 2(2):172–185. https://doi.org/10.1504/IJASM.2007.015787

    Article  Google Scholar 

  101. Ginting A, Nouari M (2009) Surface integrity of dry machined titanium alloys. Int J Mach Tools Manuf 49(3–4):325–332. https://doi.org/10.1016/j.ijmachtools.2008.10.011

    Article  Google Scholar 

  102. Pretorius CJ, Soo SL, Aspinwall DK, Harden PM, M’Saoubi R, Mantle AL (2015) Tool wear behaviour and workpiece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with polycrystalline diamond tooling. Cirp Ann Manuf Technol 64(1):109–112. https://doi.org/10.1016/j.cirp.2015.04.058

    Article  Google Scholar 

  103. Yang HC, Chen ZT, Zhou ZT (2015) Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling. Int J Adv Manuf Techn 78(5–8):1113–1126. https://doi.org/10.1007/s00170-014-6593-x

    Article  Google Scholar 

  104. Li BX, Zhang S, Li JF, Wang JC, Lu SL (2020) Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique. Mater Sci Eng Struct Mater Prop Microstruct Process 773:138717. https://doi.org/10.1016/j.msea.2019.138717

    Article  Google Scholar 

  105. Liang XL, Liu ZQ (2017) Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol 93(5–8):1617–1626. https://doi.org/10.1007/s00170-017-0654-x

    Article  Google Scholar 

  106. Moricz L, Viharos ZJ, Nemeth A, Szepligeti A, Buki M (2020) Off-line geometrical and microscopic & on-line vibration based cutting tool wear analysis for micro-milling of ceramics. Measurement 163:108025. https://doi.org/10.1016/j.measurement.2020.108025

    Article  Google Scholar 

  107. Demir HG, Yesilyurt I (2022) A comparison of four machine learning techniques and continuous wavelet transform approach for detection and classification of tool breakage during milling process, Trans Can Soc Mech Eng. https://doi.org/10.1139/tcsme-2022-0052

  108. Zhang XD, Han C, Luo M, Zhang DH (2020) Tool wear monitoring for complex part milling based on deep learning. Appl Sci Basel 10(19):6916. https://doi.org/10.3390/app10196916

    Article  Google Scholar 

  109. Zhou YQ, Sun BT, Sun WF, Lei Z (2022) Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J Intell Manuf 33(1):247–258. https://doi.org/10.1007/s10845-020-01663-1

    Article  Google Scholar 

  110. Yang YF, Guo YL, Huang ZP, Chen N, Li L, Jiang YF, He N (2019) Research on the milling tool wear and life prediction by establishing an integrated predictive model. Measurement 145:178–189. https://doi.org/10.1016/j.measurement.2019.05.009

    Article  Google Scholar 

  111. Liu TS, Zhu KP, Wang G (2020) Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method. Int J Adv Manuf Technol 111(11–12):3175–3188. https://doi.org/10.1007/s00170-020-06272-z

    Article  Google Scholar 

  112. Wiciak-Pikula M, Felusiak-Czyryca A, Twardowski P (2020) Tool Wear prediction based on artificial neural network during aluminum matrix composite milling. Sensors (Basel, Switzerland) 20(20):5798. https://doi.org/10.3390/s20205798

    Article  Google Scholar 

  113. Yang Y, Zhao XF, Zhao L (2022) Research on asymmetrical edge tool wear prediction in milling TC4 titanium alloy using deep learning. Measurement 203:111814. https://doi.org/10.1016/j.measurement.2022.111814

    Article  Google Scholar 

  114. Bernini L, Albertelli P, Monno M (2023) Mill condition monitoring based on instantaneous identification of specific force coefficients under variable cutting conditions. Mech Syst Signal Process 185:109820. https://doi.org/10.1016/j.ymssp.2022.109820

    Article  Google Scholar 

  115. Zhao PY, Cheng K, Jiang B, Zuo LH (2021) Development of the innovative differential tool wear modeling for high-feed milling and its experimental verification. Proc Inst Mech Eng Part B J Eng Manuf 235(1–2):85–97. https://doi.org/10.1177/0954405420949226

    Article  Google Scholar 

  116. Dutta S, Pal SK, Sen R (2016) Progressive tool condition monitoring of end milling from machined surface images. Proc Inst Mech Eng Part B J Eng Manuf 232(2):251–266. https://doi.org/10.1177/0954405416640417

    Article  Google Scholar 

  117. Khorasani A, Yazdi MRS (2017) Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN) in milling operation. Int J Adv Manuf Technol 93(1–4):141–151. https://doi.org/10.1007/s00170-015-7922-4

    Article  Google Scholar 

  118. Nowakowski L, Skrzyniarz M, Blasiak S, Bartoszuk M (2020) Influence of the cutting strategy on the temperature and surface flatness of the workpiece in face milling. Materials 13(20):4542. https://doi.org/10.3390/ma13204542

    Article  Google Scholar 

  119. Zhong ZL, Ai X, Liu ZQ (2013) Experimental study on cutting force and surface roughness for 7050-T7451 aluminum alloy of high speed milling. In: 3rd International Conference on Advanced Design and Manufacturing Engineering, Anshan, Peoples R China, 2013. pp 1026–1030. https://doi.org/10.4028/www.scientific.net/AMM.395-396.1026

  120. Pham TH, Nguyen DT, Banh TL, Tong VC (2020) Experimental study on the chip morphology, tool-chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc Inst Mech Eng Part B J Eng Manuf 234(3):610–620. https://doi.org/10.1177/0954405419863221

    Article  Google Scholar 

  121. Bu GB, Zhao C, Zuo DW (2008) Experimental research on aluminum alloy blade’s surface roughness of integrate rotor based on four-axis high speed milling. In: 9th Conference on Machining and Advanced Manufacturing Technology in China, Harbin, Peoples R China. pp 390. https://doi.org/10.4028/www.scientific.net/KEM.375-376.390

  122. Liu H, Wu CH, Chen RD (2010) Effects of cutting parameters on the surface roughness of Ti6Al4V titanium alloys in side milling. In: 4th Conference on Application of Diamond and Related Materials in China/1st International Symposium on Advances in Brazed Superabrasive Tools, **amen, PEOPLES R CHINA, 2010. pp 289–293. https://doi.org/10.4028/www.scientific.net/SSP.175.289

  123. Yang XY, Ren CZ, Chen G, Han B, Wang Y (2011) Effect of various cooling strategies on surface roughness of high speed milling Ti-6Al-4V. In: 14th International Manufacturing Conference in China, Tian**, Peoples R China. pp 49. https://doi.org/10.4028/www.scientific.net/MSF.697-698.49

  124. Geng GS, Xu JH, (2008) Surface integrity and fatigue property of a high speed milled titanium alloy. In: International Conference on Surface Finishing Technology and Surface Engineering, Taiyuan, Peoples R China. pp 305. https://doi.org/10.4028/www.scientific.net/AMR.53-54.305

  125. Niu, Yongsong, Zhao, Peng, Xun, Guan, Chunming (2017) Influence of finish milling parameters on machined surface integrity and fatigue behavior of Ti1023 workpiece. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9818-3

  126. Samsudeensadham S, Krishnaraj V (2014) An analysis on temperature & surface roughness during end milling of Ti-6Al-4V alloy. In: 16th International Mechanical Engineering Congress (IMEC), Tamil Nadu, India. pp 38–42.https://doi.org/10.4028/www.scientific.net/AMM.592-594.38

  127. Joshi SV, Vizhian SP, Sridhar BR, Jayaram K (2008) Parametric study of machining effect on residual stress and surface roughness of nickel base super alloy UDIMET 720. In:  International Conference on Multifunctional Materials and Structures, Hong Kong, Peoples R China. pp 13. https://doi.org/10.4028/www.scientific.net/AMR.47-50.13

  128. Qiao Y, Ai X, Lu ZQ (2011) Influence of cutting parameters on surface characteristics for milling powder metallurgy nickel-based superalloy. In: International Conference on Chemical, Material and Metallurgical Engineering, Beihai, Peoples R China, 2011. pp  1635. https://doi.org/10.4028/www.scientific.net/AMR.399-401.1635

  129. Chen M, Wang CD, Jiang L, Niu QL (2012) Experimental study on milling parameters regression and optimization of super high strength steel 30CrMnSiNi2A. In: 5th International Conference on High Speed Machining, Shandong Univ, **an, Peoples R China. pp 293. https://doi.org/10.4028/www.scientific.net/MSF.723.293

  130. Cai XJ, Qin S, An QL, Chen M (2012) Experimental investigation on surface integrity of end milling nickel based alloy-Inconel 718. In: 10th Asia-Pacific Conference on Materials Processing, Shandong Univ, **an, Peoples R China. pp 51–57. https://doi.org/10.4028/www.scientific.net/AMR.500.51

  131. Hassanpour H, Sadeghi MH, Shajari S, Emami M (2011) Empirical modeling and analysis of surface roughness in milling process of nickel-based super alloy Nimonic 115 through response surface methodology. In:14th International Symposium on Advances in Abrasive Technology, Stuttgart, GERMANY. pp 430–435. https://doi.org/10.4028/www.scientific.net/AMR.325.430

  132. Chen Z, Huang CZ, Li BH, Jiang GY, Tang ZY, Niu JH, Liu HL (2022) Experimental study on surface integrity of Inconel 690 milled by coated carbide inserts. Int J Adv Manuf Technol 121(5–6):3025–3042. https://doi.org/10.1007/s00170-022-09456-x

    Article  Google Scholar 

  133. Saleem MQ, Mumtaz S (2020) Face milling of Inconel 625 via wiper inserts: Evaluation of tool life and workpiece surface integrity. J Manuf Process 56:322–336. https://doi.org/10.1016/j.jmapro.2020.04.011

    Article  Google Scholar 

  134. Umbrello D (2013) Investigation of surface integrity in dry machining of Inconel 718. Int J Adv Manuf Technol 69(9–12):2183–2190. https://doi.org/10.1007/s00170-013-5198-0

    Article  Google Scholar 

  135. Pkg A, Vi A, Sk A Sr, B, (2020) Evaluation of surface roughness in incremental forming using image processing based methods. Measurement 164:108055. https://doi.org/10.1016/j.measurement.2020.108055

    Article  Google Scholar 

  136. Chen W, Zou B, Li Y, Huang C (2021) A study of a rapid method for detecting the machined surface roughness. Int J Adv Manuf Technol 117:3115–27

    Article  Google Scholar 

  137. Younis MA (1998) On line surface roughness measurements using image processing towards an adaptive control. Comput Ind Eng 35(1–2):49–52. https://doi.org/10.1016/S0360-8352(98)00017-5

    Article  Google Scholar 

  138. Yi H, Jian L, Peng A, Lu E, Hang Z (2016) Visual method for measuring the roughness of a grinding piece based on color indices. Opt Express 24(15):17215–17233. https://doi.org/10.1364/OE.24.017215

    Article  Google Scholar 

  139. Yi HA, Fang RJ, Wang SA, Niu YL, Jiao YM (2022) Research on the applicability of color vision-based roughness inspection method. Surf Topogr Metrol Prop 10(2):025016. https://doi.org/10.1088/2051-672X/ac6c1d

    Article  Google Scholar 

  140. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 1800-1807.

  141. Su JZ, Yi HA, Ling L, Shu AH, Lu EH, Jiao YM, Wang S (2023) Multi-object surface roughness grade detection based on Faster R-CNN. Meas Sci Technol 34(1):015012. https://doi.org/10.1088/1361-6501/ac900b

    Article  Google Scholar 

  142. Li ZQ, **ao JD, Han X, Zhang WF (2022) Z-map based cutting force prediction for elliptical ultrasonic vibration-assisted milling process. Int J Adv Manuf Technol 120(5–6):3237–3249. https://doi.org/10.1007/s00170-022-08976-w

    Article  Google Scholar 

  143. Gao HN, Shen HD, Yu L, Wang YL, Yang Y, Yan SC, Li QB, Hu YJ (2022) Simulation study on surface topography and roughness in milling process of curved die. Integr Ferroelectr 227(1):1–12. https://doi.org/10.1080/10584587.2022.2065570

    Article  Google Scholar 

  144. Shujuan L, Dong Y, Li Y, Li P, Yang Z, Landers RG (2019) Geometrical simulation and analysis of ball-end milling surface topography. Int J Adv Manuf Technol 102(5):1885–1900. https://doi.org/10.1007/s00170-018-03217-5

    Article  Google Scholar 

  145. Li ZQ, Liu Q (2013) Surface topography and roughness in hole-making by helical milling. Int J Adv Manuf Technol 66(9–12):1415–1425. https://doi.org/10.1007/s00170-012-4419-2

    Article  Google Scholar 

  146. Chen HQ, Wang QH (2019) Modelling and simulation of surface topography machined by peripheral milling considering tool radial runout and axial drift. Proc Inst Mech Eng Part B J Eng Manuf 233(12):2227–2240. https://doi.org/10.1177/0954405419838384

    Article  Google Scholar 

  147. Hao YS, Liu Y (2017) Analysis of milling surface roughness prediction for thin-walled parts with curved surface. Int J Adv Manuf Technol 93(5–8):2289–2297. https://doi.org/10.1007/s00170-017-0615-4

    Article  Google Scholar 

  148. Gao HN, Yue CX, Liu XL, Nan YC (2019) Simulation of surface topography considering cut-in impact and tool flank wear. Appl Sci 9(4):732. https://doi.org/10.3390/app9040732

    Article  Google Scholar 

  149. Hao XL, Yue CX, Liu XL, Wang LH, Liang SVY, Nan YC (2020) Modeling of convex surface topography in milling process. Metals 10(9):1218. https://doi.org/10.3390/met10091218

    Article  Google Scholar 

  150. Zhou RH, Chen QL (2021) An analytical prediction model of surface topography generated in 4-axis milling process. Int J Adv Manuf Technol 115(9–10):3289–3299. https://doi.org/10.1007/s00170-021-07410-x

    Article  Google Scholar 

  151. Dong YH, Li SJ, Zhang Q, Li PY, Jia Z, Li Y (2021) Modeling and analysis of micro surface topography from ball-end milling in a trochoidal milling mode. Micromachines 12(10):1203. https://doi.org/10.3390/mi12101203

    Article  Google Scholar 

  152. Sriyotha P, Sahasrabudhe A, Yamazaki K, Mori M (2006) Geometrical modelling of a ball-end finish milling process for a surface finish. Proc Inst Mech Eng Part B J Eng Manuf 220(4):467–477. https://doi.org/10.1243/09544054jem228

    Article  Google Scholar 

  153. Rao KV, Ramesh C (2022) Modeling of tool vibration and its effect on roundness and surface roughness of hole in helical milling of Inconel 718. J Vib Control 28(1–2):159–168. https://doi.org/10.1177/1077546320974236

    Article  Google Scholar 

  154. Quinsat Y, Lavernhe S, Lartigue C (2011) Characterization of 3D surface topography in 5-axis milling. Wear 271(3–4):590–595. https://doi.org/10.1016/j.wear.2010.05.014

    Article  Google Scholar 

  155. Peng ZX, Jiao L, Yan P, Yuan MX, Gao SF, Yi J, Wang XB (2018) Simulation and experimental study on 3D surface topography in micro-ball-end milling. Int J Adv Manuf Technol 96(5–8):1943–1958. https://doi.org/10.1007/s00170-018-1597-6

    Article  Google Scholar 

  156. Lotfi S, Wassila B, Gilles D (2018) Cutter workpiece engagement region and surface topography prediction in five-axis ball-end milling. Mach Sci Technol 22(2):181–202. https://doi.org/10.1080/10910344.2017.1337131

    Article  Google Scholar 

  157. Liu C, He Y, Wang YL, Li YF, Wang SL, Wang LX, Wang Y (2019) An investigation of surface topography and workpiece temperature in whirling milling machining. Int J Mech Sci 164:105182. https://doi.org/10.1016/j.ijmecsci.2019.105182

    Article  Google Scholar 

  158. Sun YW, Shi ZF, Guo Q, Xu JT (2022) A novel method to predict surface topography in robotic milling of directional plexiglas considering cutter dynamical displacement. J Mater Process Technol 304:117545. https://doi.org/10.1016/j.jmatprotec.2022.117545

    Article  Google Scholar 

  159. Chen KD, Zhang H, van de Wouw N, Detournay E (2022) An alternative approach to compute chip thickness in milling. J Manuf Sci Eng 144(11):111006. https://doi.org/10.1115/1.4054804

    Article  Google Scholar 

  160. Kong D, Zhu J, Duan C, Lu L, Chen D (2021) Surface roughness prediction using kernel locality preserving projection and Bayesian linear regression. Mech Syst Signal Process 152(2):107474. https://doi.org/10.1016/j.ymssp.2020.107474

    Article  Google Scholar 

  161. Kong D, Zhu J, Duan C, Lu L, Chen D (2020) Bayesian linear regression for surface roughness prediction. Mech Syst Signal Process 142:106770. https://doi.org/10.1016/j.ymssp.2020.106770

    Article  Google Scholar 

  162. Lu YA, Wang CY, Zhou L (2019) Geometric deviation evaluation for a five-axis flank milling tool path using the tool swept envelope. Int J Adv Manuf Technol 105(10):1811–21. https://doi.org/10.1007/s00170-019-04397-4

    Article  Google Scholar 

  163. Quintana G, Garcia-Romeu ML, Ciurana J (2011) Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. J Intell Manuf 22(4):607–617. https://doi.org/10.1007/s10845-009-0323-5

    Article  Google Scholar 

  164. Quintana G, Bustillo A, Ciurana J (2012) Prediction, monitoring and control of surface roughness in high-torque milling machine operations. Int J Comput Integr Manuf 25(12):1129–1138. https://doi.org/10.1080/0951192x.2012.684717

    Article  Google Scholar 

  165. Ying ZZ, Shu LM, Sugita N (2022) Bone milling: on monitoring cutting state and force using sound signals. Chin J Mech Eng 35(1):61. https://doi.org/10.1186/s10033-022-00744-x

    Article  Google Scholar 

  166. Pimenov DY, Bustillo A, Mikolajczyk T (2018) Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J Intell Manuf 29(5):1045–1061. https://doi.org/10.1007/s10845-017-1381-8

    Article  Google Scholar 

  167. Li ZM, Wang GF, He GY (2018) Surface quality monitoring based on time-frequency features of acoustic emission signals in end milling Inconel-718. Int J Adv Manuf Technol 96(5–8):2725–2733. https://doi.org/10.1007/s00170-018-1773-8

    Article  Google Scholar 

  168. Marinescu IL, Axinte DA (2011) An automated monitoring solution for avoiding an increased number of surface anomalies during milling of aerospace alloys. Int J Mach Tools Manuf 51(4):349–357. https://doi.org/10.1016/j.ijmachtools.2010.10.005

    Article  Google Scholar 

  169. Marinescu I, Axinte D (2009) A time-frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously. Int J Mach Tools Manuf 49(1):53–65. https://doi.org/10.1016/j.ijmachtools.2008.08.002

    Article  Google Scholar 

  170. Huang PB, Zhang HJ, Lin YC (2017) Development of a Grey online modeling surface roughness monitoring system in end milling operations. J Intell Manuf 30(4):1923–1936. https://doi.org/10.1007/s10845-017-1361-z

    Article  Google Scholar 

  171. Li SY, Li SC, Liu Z, Vladimirovich PA (2022) Roughness prediction model of milling noise-vibration-surface texture multi-dimensional feature fusion for N6 nickel metal. J Manuf Process 79:166–176. https://doi.org/10.1016/j.jmapro.2022.04.055

    Article  Google Scholar 

  172. Wan Y, Cheng K, Fu XL, Liu ZQ (2013) An experiment-based investigation on surface corrosion resistance behaviors of aluminum alloy 7050–T7451 after end milling. Proc Inst Mech Eng J Eng Tribol 227(11):1297–1305. https://doi.org/10.1177/1350650113491084

    Article  Google Scholar 

  173. Wang B, Zhang Q, Wang MH, Zheng YH, Kong XJ (2021) Comparison of surface integrity of Ti6Al4V titanium alloy manufactured by laser deposition and traditional method after end milling. Proc Inst Mech Eng Part C J Mech Eng Sci 235(19):4097–4108. https://doi.org/10.1177/0954406220972135

    Article  Google Scholar 

  174. Liu C, Ren CZ, Wang GF, Yang YW, Zhang L (2015) Study on surface defects in milling Inconel 718 super alloy. J Mech Sci Technol 29(4):1723–1730. https://doi.org/10.1007/s12206-015-0345-1

    Article  Google Scholar 

  175. Dosbaeva GK, Veldhuis SC, Elfizy A, Fox-Rabinovich G, Wagg T (2010) Microscopic observations on the origin of defects during machining of direct aged (DA) Inconel 718 superalloy. J Mater Eng Perform 19(8):1193–1198. https://doi.org/10.1007/s11665-009-9587-3

    Article  Google Scholar 

  176. Fernandez C, Cervera PC, Platero C, Sebastian JM, Aracil R (1993) On-line surface inspection for continuous cast aluminum strip. Proc SPIE Int Soc Opt Eng 1989:26–37. https://doi.org/10.1117/12.164877

    Article  Google Scholar 

  177. Huang XQ, Luo XB (2014) A real-time algorithm for aluminum surface defect extraction on non-uniform image from CCD camera. Comm the Acm 10(3):556–561. https://doi.org/10.1109/ICMLC.2014.7009668

    Article  Google Scholar 

  178. Liu K, Wang H, Chen H, Qu E, Ying T, Sun H (2017) Steel surface defect detection using a new Haar-Weibull-variance model in unsupervised manner. IEEE Trans Instrument Meas 66(10):2585–2596. https://doi.org/10.1109/TIM.2017.2712838

    Article  Google Scholar 

  179. Wei R, Bi Y (2019) Research on recognition technology of aluminum profile surface defects based on deep learning. Materials 12(10):1681–1693. https://doi.org/10.3390/ma12101681

    Article  Google Scholar 

  180. Neuhauser FM, Bachmann G, Hora P (2019) Surface defect classification and detection on extruded aluminum profiles using convolutional neural networks. Int J Mater Form 13(3):13. https://doi.org/10.1007/s12289-019-01496-1

    Article  Google Scholar 

  181. Zhang D, Song K, Xu J, He Y, Yan Y (2019) Unified detection method of aluminium profile surface defects: Common and rare defect categories. Opt Laser Eng 126:23–35. https://doi.org/10.1016/j.optlaseng.2019.105936

    Article  Google Scholar 

  182. Liang Y, Xu K, Zhou P (2020) Mask gradient response-based threshold segmentation for surface defect detection of milled aluminum ingot. Sensors 20(16):4519–4541. https://doi.org/10.3390/s20164519

    Article  Google Scholar 

  183. Niu JT, Liu ZQ, Ai X, Huang WM, Wang GJ, Duan R (2019) Characteristics of machined surface integrity in face milling Al-Li alloy 2A97 with carbide inserts. Int J Adv Manuf Technol 101(1–4):839–848. https://doi.org/10.1007/s00170-018-2907-8

    Article  Google Scholar 

  184. Altunpak Y, Akbulut H (2009) Effects of aging heat treatment on machinability of alumina short fiber reinforced LM 13 aluminum alloy. Int J Adv Manuf Technol 43(5–6):449–454. https://doi.org/10.1007/s00170-008-1724-x

    Article  Google Scholar 

  185. Velásquez J, Tidu A, Bolle B, Chevrier P, Fundenberger JJ (2010) Subsurface and surface analysis of high speed machined Ti–6Al–4V alloy. Mater Sci Eng A 527(10–11):2572–2578. https://doi.org/10.1016/j.msea.2009.12.018

    Article  Google Scholar 

  186. Wang Q, Liu Z, Yang D, Mohsan A (2017) Metallurgical-based prediction of stress-temperature induced rapid heating and cooling phase transformations for high speed machining Ti-6Al-4V alloy. Mater Design 119:208–218. https://doi.org/10.1016/j.matdes.2017.01.076

    Article  Google Scholar 

  187. Yang D, Liu ZQ (2016) Quantification of microstructural features and prediction of mechanical properties of a dual-phase Ti-6Al-4V alloy. Materials 9(8):628. https://doi.org/10.3390/ma9080628

    Article  Google Scholar 

  188. Huang PL, Zhou J, Xu L (2022) Online measurement of the elastic recovery value of machined surface in milling titanium alloy. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-09293-y

  189. Zhou JM, Bushlya V, Peng RL, Johansson S, Avdovic P, Stahl JE (2012) Effects of tool wear on subsurface deformation of nickel-based superalloy. In: 1st CIRP Conference on Surface Integrity (CSI), Bremen, Germany. https://doi.org/10.1016/j.proeng.2011.11.133

  190. Brown TL, Saldana C, Murthy TG, Mann JB, Guo Y, Allard LF, King AH, Compton WD, Trumble KP, Chandrasekar S (2009) A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Materialia 57(18):5491–5500. https://doi.org/10.1016/j.actamat.2009.07.052

    Article  Google Scholar 

  191. Bushlya V, Zhou JM, Lenrick F, Avdovic P (2011) Characterization of white layer generated when turning aged Inconel 718. Proc Eng 19:60–66. https://doi.org/10.1016/j.proeng.2011.11.080

    Article  Google Scholar 

  192. Musfirah AH, Ghani JA, Haron CHC (2017) Tool wear and surface integrity of Inconel 718 in dry and cryogenic coolant at high cutting speed. Wear 376:125–133. https://doi.org/10.1016/j.wear.2017.01.031

    Article  Google Scholar 

  193. Liao Z, Axinte D, Mieszala M, M’Saoubi R, Abelhafeez A, Michler J, Hardy M (2018) On the influence of gamma prime upon machining of advanced nickel based superalloy. Cirp Ann 1730–1734. https://doi.org/10.1016/j.cirp.2018.03.021

  194. Liao Z, Polyakov M, Diaz OG, Axinte D, Hardy M (2019) Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - mechanical machining case. Acta Materialia 180:2–14. https://doi.org/10.1016/j.actamat.2019.08.059

    Article  Google Scholar 

  195. Mohammadi Y, Amirabadi H (2021) Analytical modeling of work hardening of duplex steel alloys in milling process. https://doi.org/10.21203/rs.3.rs-293890/v1

  196. Yin QG, Liu ZQ, Wang B, Song QH, Cai YK (2020) Recent progress of machinability and surface integrity for mechanical machining Inconel 718: a review. Int J Adv Manuf Technol 109(1–2):215–245. https://doi.org/10.1007/s00170-020-05665-4

    Article  Google Scholar 

  197. Zhu P (2021) Effects of sequential operation with heat treatment and mechanical milling on work hardening for superalloy GH4169. Metals 11:1367. https://doi.org/10.3390/met11091367

    Article  Google Scholar 

  198. Caixu Yue XH (2020) Analytical prediction of residual stress in the machined surface during milling. Metals 10:498. https://doi.org/10.3390/met10040498

    Article  Google Scholar 

  199. Wan Y, Li C, Liu ZD, Sun SF (2012) Influence of milling parameters on surface residual stresses of 7050-T7451 aluminum alloy. In: 5th International Conference on High Speed Machining, Shandong Univ, **an, Peoples R China, 2012. pp 208. https://doi.org/10.4028/www.scientific.net/MSF.723.208

  200. Changfeng Y, Daoxia W, Liang T, Junxue R, Kaining S, Zhenchao Y (2013) Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6. Proc Inst Mech Eng Part B J Eng Manuf 227(4):483–493. https://doi.org/10.1177/0954405413475771

    Article  Google Scholar 

  201. Zhou R, Yang W (2019) Analytical modeling of machining-induced residual stresses in milling of complex surface. Int J Adv Manuf Techn 105(1–4):565–577. https://doi.org/10.1007/s00170-019-04219-7

    Article  Google Scholar 

  202. Takahei K, Miwa S, Shamoto E, Suzuki N (2023) Parameter identification for linear model of the milling process using spindle speed variation. Prec Eng J Int Soc Precis Eng Nanotechnol 79:16–33. https://doi.org/10.1016/j.precisioneng.2022.08.011

    Article  Google Scholar 

  203. Jovani T, Blaysat B, Chanal H, Grediac M (2022) Applying the virtual fields method to measure during milling the through-thickness residual stress distribution in aluminum-alloy sheet material. Exp Mech. https://doi.org/10.1007/s11340-022-00909-8

  204. Li M, Wang J, Yang H, Shi J (2022) Research on influence of milling process parameters on residual stress of 7055 aluminum alloy. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/2268/1/012002

  205. Yao CF, Yang ZC, Huang XC, Ren JX, Zhang DH (2011) Thestudy of residual stresses in high-speed milling of titanium alloy TC11. In: International Conference on Manufacturing Science and Materials Engineering, Shanghai, Peoples R China, 2011. pp 160-165. https://doi.org/10.4028/www.scientific.net/AMR.443-444.160

  206. Hua Y, Liu ZQ (2018) Experimental investigation of principal residual stress and fatigue performance for turned nickel-based superalloy Inconel 718. Materials 11(6):879. https://doi.org/10.3390/ma11060879

    Article  Google Scholar 

  207. Adrien Cellier, Florent Chalon, Virginie Grimal-Perrigouas, David Bonhoure, René Leroy (2014) Effects of cutting angles in Ti-6al-4v milling process on surface integrity: influence of roughness and residual stresses on fatigue limit. Mach Sci Technol 18:565–84. https://doi.org/10.1080/10910344.2014.955369

    Article  Google Scholar 

  208. Zhang S, Gong M, Zeng X, Gao M (2021) Residual stress and tensile anisotropy of hybrid wire arc additive-milling subtractive manufacturing. J Mater Process Technol 293:117077. https://doi.org/10.1016/j.jmatprotec.2021.117077

    Article  Google Scholar 

  209. Tong J, Zhao J, Chen P, Zhang Z, Zhao B (2019) Effect of ultrasonic longitudinal–torsional composite milling of the residual stress on the surface of titanium alloy. Proc Inst Mech Eng Part C J Mech Eng Sci 234(8):1598–1608. https://doi.org/10.1177/0954406219896595

    Article  Google Scholar 

  210. Mb A, Rt B, Ky B (2021) Comprehensive study on effect of orthogonal turn-milling parameters on surface integrity of Inconel 718 considering production rate as constrain. Int J Lightweight Mater Manuf 4(2):145–155. https://doi.org/10.1016/j.ijlmm.2020.09.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dongkai Wang contributed to this thesis. Literature review, factor analysis, and map** relationship between different concepts were constructed by Dongkai Wang. The first draft of the manuscript was written by Dongkai Wang. Dongkai Wang commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Dongkai Wang.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D. Research on surface integrity and its influencing factors in the high-speed cutting of typical aluminum/titanium/nickel alloys: a review. Int J Adv Manuf Technol 127, 4915–4942 (2023). https://doi.org/10.1007/s00170-023-11808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11808-0

Keywords

Navigation