Log in

Forming challenges of small and complex fiber metal laminate parts in aerospace applications—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fiber metal laminates (FMLs) are a super hybrid material that provides the combined advantages of metals and composites and offers significant potential as an ultralight structural material in the aerospace industry. Consequently, there has been increased research attention on FML mass production processes. The recent developments in FML component production and FML sheet preparation are the main topics of this review. First, a general overview of the development history, fabrication process, and properties of FMLs and their production process is presented in this paper. With a focus on combined die forming, such as stam** and hydroforming, which is the most promising method for the mass manufacture of complex curve-shaped FML components, several other forming technologies are also discussed in depth. Afterward, the FMLs’ forming limitations and challenges, which have been observed in previous research, are also mentioned thoroughly. The defect and deformation modes that can develop during the forming processes of FMLs are addressed. Furthermore, considering all the relevant factors, the future scope of study and development has also been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Bieniaś J, Jakubczak P, Surowska B (2017) Properties and characterization of fiber metal laminates. Hybrid polymer composite materials. Woodhead Publishing, pp 253–277. https://doi.org/10.1016/B978-0-08-100787-7.00011-1

  2. Lee D-W, Park B-J, Park S-Y, Choi C-H, Song J-I (2018) Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings. Compos Struct 189:61–69. https://doi.org/10.1016/j.compstruct.2018.01.044

    Article  Google Scholar 

  3. Park SY, Choi WJ (2019) The guidelines of material design and process control on hybrid fiber metal laminate for aircraft structures. Optimum Composite Structures 70–92. https://doi.org/10.5772/intechopen.78217

  4. De Cicco D, Taheri F (2019) Performances of magnesium-and steel-based 3D fiber-metal laminates under various loading conditions. Compos Struct 229:111390. https://doi.org/10.1016/j.compstruct.2019.111390

    Article  Google Scholar 

  5. Mottaghian F, Yaghoobi H, Taheri F (2020) Numerical and experimental investigations into post-buckling responses of stainless steel-and magnesium-based 3D-fiber metal laminates reinforced by basalt and glass fabrics. Compos B Eng 200:108300. https://doi.org/10.1016/j.compositesb.2020.108300

    Article  Google Scholar 

  6. Chen Y, Chen L, Huang Q, Zhang Z (2021) Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact. Mech Adv Mater Struct 29(25):4582–4598. https://doi.org/10.1080/15376494.2021.1933659

  7. Li X, Zhang X, Guo Y, Shim V, Yang J, Chai GB (2018) Influence of fiber type on the impact response of titanium-based fiber-metal laminates. Int J Impact Eng 114:32–42. https://doi.org/10.1016/j.ijimpeng.2017.12.011

    Article  Google Scholar 

  8. Mukesh A, Hynes NRJ (2019) Mechanical properties and applications of fibre metal laminates. AIP Conf Proc 2142(1):100002. https://doi.org/10.1063/1.5122456

    Article  Google Scholar 

  9. De Jong TW (2004) Forming of laminates. vol 90–407–2506–3. Delft University Press. http://resolver.tudelft.nl/uuid:f29ecffb-04c8-4230-a1ee-9418095b628a

  10. Asghar W, Nasir M, Qayyum F, Shah M, Azeem M, Nauman S, Khushnood S (2017) Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue Fract Eng Mater Struct 40(7):1086–1100. https://doi.org/10.1111/ffe.12566

    Article  Google Scholar 

  11. Das R, Chanda A, Brechou J, Banerjee A (2016) Impact behaviour of fibre–metal laminates. Dynamic deformation, damage and fracture in composite materials and structures. Elsevier, pp 491–542. https://doi.org/10.1016/B978-0-08-100080-9.00017-8

  12. Elhabak AA, Shazly M, Osman TA, Khattab AA (2019) Mechanical behavior of aluminum hybrid laminates. J Eng Appl Sci 14(20):3455–3462

    Google Scholar 

  13. Khalid MY, Arif ZU, Ahmed W, Arshad H (2022) Evaluation of tensile properties of fiber metal laminates under different strain rates. Proc Inst Mech Eng E: J Process Mech Eng 236(2):556–564. https://doi.org/10.1177/09544089211053063

    Article  Google Scholar 

  14. Muniswamy HK, Nagarathnam RM (2022) Comparative study on the experimental results on low-velocity impact characteristics of GLARE Laminates with simulation results from LS Dyna. J Inst Eng (India) 1–12. https://doi.org/10.1007/s40033-022-00355-9

  15. Kumar H, Mathivanan NR (2022) Low-Velocity Impact characteristics of GLARE laminates with different sheet thickness. SAE Tech Pap. https://doi.org/10.4271/2022-01-5027

    Article  Google Scholar 

  16. Wang C, Yao L, He W, Cui X, Wu J, **e D (2020) Effect of elliptical notches on mechanical response and progressive damage of FMLs under tensile loading. Thin-Walled Struct 154:106866. https://doi.org/10.1016/j.tws.2020.106866

    Article  Google Scholar 

  17. Pan L, Wang Y, Hu Y, Lv Y, Ali A, Roy N, Ma W, Tao J (2020) Investigation on the effect of configuration on tensile and flexural properties of aluminum/self-reinforced polypropylene fiber metal laminates. J Sandwich Struct Mater 22(6):1770–1785. https://doi.org/10.1177/1099636218789620

    Article  Google Scholar 

  18. Logesh K, Hariharasakthisudhan P, Rajan BS, Moshi AAM, Khalkar V (2020) Effect of multi-walled carbon nano-tube on mechanical behavior of glass laminate aluminum reinforced epoxy composites. Polym Compos 41(11):4849–4860. https://doi.org/10.1002/pc.25757

    Article  Google Scholar 

  19. Zhu W, **ao H, Wang J, Li X (2021) Effect of coupling agent quantity on composite interface structure and properties of fiber metal laminates. Polym Compos 42(7):3195–3205. https://doi.org/10.1002/pc.26050

    Article  Google Scholar 

  20. Zhou X, Zhao Y, Chen X, Liu Z, Li J, Fan Y (2021) Fabrication and mechanical properties of novel CFRP/Mg alloy hybrid laminates with enhanced interface adhesion. Mater Des 197:109251. https://doi.org/10.1016/j.matdes.2020.109251

    Article  Google Scholar 

  21. Li L, Lang L, Hamza B, Zhang Q (2020) Effect of hydroforming process on the formability of fiber metal laminates using semi-cured preparation. Int J Adv Manuf Technol 107(9):3909–3920. https://doi.org/10.1007/s00170-020-05281-2

    Article  Google Scholar 

  22. Morgado M, Carbas R, Marques E, Da Silva L (2019) Reinforcement of CFRP single lap joints using metal laminates. Compos Struct 230:111492. https://doi.org/10.1016/j.compstruct.2019.111492

    Article  Google Scholar 

  23. Zhang X, Meng W, Zhang T, Huang X, Hou S (2020) Analysis and research on solution method of metal layer stress in fiber metal laminates. Mater Res Express 7(11):116514. https://doi.org/10.1088/2053-1591/abc71d

    Article  Google Scholar 

  24. Yelamanchi B, MacDonald E, Gonzalez-Canche NG, Carrillo JG, Cortes P (2020) The mechanical properties of fiber metal laminates based on 3D printed composites. Materials 13(22):5264. https://doi.org/10.3390/ma13225264

    Article  Google Scholar 

  25. Minchenkov K, Vedernikov A, Safonov A, Akhatov I (2021) Thermoplastic pultrusion: a review. Polymers 13(2):180. https://doi.org/10.3390/polym13020180

    Article  Google Scholar 

  26. Chen Y, Wang Y, Wang H (2020) Research progress on interlaminar failure behavior of fiber metal laminates. Adv Polym Technol 2020. https://doi.org/10.1155/2020/3097839

  27. Park SY, Choi WJ, Choi HS (2010) A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. Int J Adv Manuf Technol 49(5):605–613. https://doi.org/10.1007/s00170-009-2408-x

    Article  Google Scholar 

  28. Jakubczak PA, Bienias J, Mania R, Majerski K (2018) Forming of thin-walled profiles made of FML in autoclave process. Aircr Eng Aerosp Technol. https://doi.org/10.1108/AEAT-01-2016-0016

    Article  Google Scholar 

  29. Zapp P, Ucan H, Nikos P (2019) The way to decrease the curing time by 50% in the manufacturing of structural components using the example of FML fuselage panels. International SAMPE Technical Conference. https://elib.dlr.de/130943/

  30. Ucan H, Scheller J, Nguyen C, Nieberl D, Beumler T, Haschenburger A, Meister S, Kappel E, Prussak R, Deden D (2019) Automated, quality assured and high volume oriented production of fiber metal laminates (FML) for the next generation of passenger aircraft fuselage shells. Sci Eng Compos Mater 26(1):502–508. https://doi.org/10.1515/secm-2019-0031

    Article  Google Scholar 

  31. Steven Johnson W, Li E, Miller JL (1996) High temperature hybrid titanium composite laminates: an early analytical assessment. Appl Compos Mater 3(6):379–390. https://doi.org/10.1007/BF00133681

    Article  Google Scholar 

  32. Sinke J (2006) Development of fibre metal laminates: concurrent multi-scale modeling and testing. J Mater Sci 41(20):6777–6788. https://doi.org/10.1007/s10853-006-0206-5

    Article  Google Scholar 

  33. Logesh K, Raja VB, Nair VH, KM S, KM V, Balaji M (2017) Review on manufacturing of fibre metal laminates and its characterization techniques. Journal of Mechanical Engineering and Technology (IJMET) 8(10):561–78. http://iaeme.com/Home/issue/IJMET?Volume=8&Issue=10

  34. Liu Y, Liaw B (2010) Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates. Appl Compos Mater 17(1):43–62. https://doi.org/10.1007/s10443-009-9119-1

    Article  Google Scholar 

  35. Cortés P, Cantwell W (2005) The fracture properties of a fibre–metal laminate based on magnesium alloy. Compos B Eng 37(2–3):163–170. https://doi.org/10.1016/j.compositesb.2005.06.002

    Article  Google Scholar 

  36. Alderliesten R, Rans C, Benedictus R (2008) The applicability of magnesium based fibre metal laminates in aerospace structures. Compos Sci Technol 68(14):2983–2993. https://doi.org/10.1016/j.compscitech.2008.06.017

    Article  Google Scholar 

  37. Park SY, Choi WJ, Choi HS, Kwon H (2010) Effects of surface pre-treatment and void content on GLARE laminate process characteristics. J Mater Process Technol 210(8):1008–1016. https://doi.org/10.1016/j.jmatprotec.2010.01.017

    Article  Google Scholar 

  38. Langdon G, Cantwell W, Nurick G (2005) The blast response of novel thermoplastic-based fibre-metal laminates–some preliminary results and observations. Compos Sci Technol 65(6):861–872. https://doi.org/10.1016/j.compscitech.2004.09.025

    Article  Google Scholar 

  39. Dhari RS (2021) A numerical study on cross ply laminates subjected to stray fragments impact loading. Compos Struct 261:113563. https://doi.org/10.1016/j.compstruct.2021.113563

    Article  Google Scholar 

  40. Llobet J, Maimí P, Essa Y, de la Escalera FM (2019) Progressive matrix cracking in carbon/epoxy cross-ply laminates under static and fatigue loading. Int J Fatigue 119:330–337. https://doi.org/10.1016/j.ijfatigue.2018.10.008

    Article  Google Scholar 

  41. Shanmugam L, Kazemi ME, Rao Z, Yang L, Yang J (2020) On the metal thermoplastic composite interface of Ti alloy/UHMWPE-Elium® laminates. Compos B: Eng 181:107578. https://doi.org/10.1016/j.compositesb.2019.107578

  42. Shanmugam L, Kazemi ME, Qiu C, Rui M, Yang L, Yang J (2020) Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. Adv Compos Hybrid Mater 3(4):508–521. https://doi.org/10.1007/s42114-020-00189-7

    Article  Google Scholar 

  43. Mansoori H, Zakeri M, Guagliano M (2022) Energy absorption and damage mechanism of UHMWPE-aluminum composite sandwich laminate under impact loading: an experimental investigation. J Sandwich Struct Mater 24(1):360–384. https://doi.org/10.1177/10996362211020459

    Article  Google Scholar 

  44. Vogelesang LB, Vlot A (2000) Development of fibre metal laminates for advanced aerospace structures. J Mater Process Technol 103(1):1–5. https://doi.org/10.1016/S0924-0136(00)00411-8

    Article  Google Scholar 

  45. Khan S, Alderliesten R, Benedictus R (2009) Delamination growth in fibre metal laminates under variable amplitude loading. Compos Sci Technol 69(15–16):2604–2615. https://doi.org/10.1016/j.compscitech.2009.07.019

    Article  Google Scholar 

  46. He W, Wang L, Liu H, Wang C, Yao L, Li Q, Sun Gu (2021) On impact behavior of fiber metal laminate (FML) structures: a state-of-the-art review. Thin-Walled Struct 167:108026. https://doi.org/10.1016/j.tws.2021.108026

  47. Da Silva D, Botelho EC, Rezende M (2009) Hygrothermal aging effect on fatigue behavior of GLARE. J Reinf Plast Compos 28(20):2487–2499. https://doi.org/10.1177/0731684408092379

    Article  Google Scholar 

  48. Lin C, Kao P, Yang F (1991) Fatigue behaviour of carbon fibre-reinforced aluminium laminates. Compos B Eng 22(2):135–141. https://doi.org/10.1016/0010-4361(91)90672-4

    Article  Google Scholar 

  49. Lin C, Kao P (1996) Fatigue delamination growth in carbon fibre-reinforced aluminium laminates. Compos A Appl Sci Manuf 27(1):9–15. https://doi.org/10.1016/1359-835X(95)00006-N

    Article  Google Scholar 

  50. **a Y, Wang Y, Zhou Y, Jeelani S (2007) Effect of strain rate on tensile behavior of carbon fiber reinforced aluminum laminates. Mater Lett 61(1):213–215. https://doi.org/10.1016/j.matlet.2006.04.043

    Article  Google Scholar 

  51. Botelho E, Pardini L, Rezende M (2007) Evaluation of hygrothermal effects on the shear properties of Carall composites. Mater Sci Eng 452:292–301. https://doi.org/10.1016/j.msea.2006.10.127

    Article  Google Scholar 

  52. Ali A, Pan L, Duan L, Zheng Z, Sapkota B (2016) Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications. Compos Struct 158:199–207. https://doi.org/10.1016/j.compstruct.2016.09.037

    Article  Google Scholar 

  53. Kazemi ME, Shanmugam L, Yang L, Yang J (2020) A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties. Compos A: Appl Sci Manuf 128:105679. https://doi.org/10.1016/j.compositesa.2019.105679

    Article  Google Scholar 

  54. Liu J, Huang X, Ren Y, Wong LM, Liu H, Wang S (2022) Galvanic corrosion protection of Al-alloy in contact with carbon fibre reinforced polymer through plasma electrolytic oxidation treatment. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-022-08727-7

    Article  Google Scholar 

  55. Nazarian O, Zok FW (2014) Shear-dominated plastic behavior of a cross-ply Dyneema® composite. Compos A Appl Sci Manuf 67:316–323. https://doi.org/10.1016/j.compositesa.2014.09.012

    Article  Google Scholar 

  56. Russell B, Karthikeyan K, Deshpande V, Fleck N (2013) The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate. Int J Impact Eng 60:1–9. https://doi.org/10.1016/j.ijimpeng.2013.03.010

    Article  Google Scholar 

  57. O’Masta M, Deshpande V, Wadley H (2014) Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures. Int J Impact Eng 74:16–35. https://doi.org/10.1016/j.ijimpeng.2014.02.002

    Article  Google Scholar 

  58. Huang Y, Frings P, Hennes E (2002) Mechanical properties of Zylon/epoxy composite. Compos B Eng 33(2):109–115. https://doi.org/10.1016/S1359-8368(01)00064-6

    Article  Google Scholar 

  59. Vallabh R, Li A, Bradford PD, Kim D, Seyam A-FM (2021) Ultra-lightweight fiber-reinforced envelope material for high-altitude airship. J Text Inst 1–7. https://doi.org/10.1080/00405000.2021.1948695

  60. Kazemi M, Bodaghi M, Shanmugam L, Fotouhi M, Yang L, Zhang W, Yang J (2021) Develo** thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: low-velocity impact analyses. Compos A: Appl Sci Manuf 149:106552. https://doi.org/10.1016/j.compositesa.2021.106552

    Article  Google Scholar 

  61. Sharma AP, Velmurugan R, Shankar K, Ha S (2021) High-velocity impact response of titanium-based fiber metal laminates. Part I: Experimental investigations. Int J Impact Eng 152:103845. https://doi.org/10.1016/j.ijimpeng.2021.103845

  62. Sun J, Daliri A, Lu G, Liu D, **a F, Gong A (2021) Tensile behaviour of titanium-based carbon-fibre/epoxy laminate. Constr Build Mater 281:122633. https://doi.org/10.1016/j.conbuildmat.2021.122633

  63. Sharma AP, Velmurugan R (2021) Effect of high strain rate on tensile response and failure analysis of titanium/glass fiber reinforced polymer composites. J Compos Mater 55(24):3443–3470. https://doi.org/10.1177/00219983211018844

    Article  Google Scholar 

  64. Medenblik E (1994) Titanium fibre-metal laminates. Master Thesis, Delft University of Technology

  65. Miller J, Progar D, Johnson W, St. Clair T (1995) Preliminary evaluation of hybrid titanium composite laminates. J Adhes 54(1-4):223-40.https://doi.org/10.1080/00218469508014392

  66. Zheng Y, Zhang C, Ying T, Xu W, Mingkun L (2022) Tensile properties analysis of CFRP-titanium plate multi-bolt hybrid joints. Chin J Aeronaut 35(3):464–474. https://doi.org/10.1016/j.cja.2021.07.006

    Article  Google Scholar 

  67. Sun J, Xu S, Lu G, Wang Q, Gong A (2022) Ballistic impact experiments of titanium-based carbon-fibre/epoxy laminates. Thin-Walled Struct 179:109709. https://doi.org/10.1016/j.tws.2022.109709

    Article  Google Scholar 

  68. Hamill L, Hofmann DC, Nutt S (2018) Galvanic corrosion and mechanical behavior of fiber metal laminates of metallic glass and carbon fiber composites. Adv Eng Mater 20(2):1700711. https://doi.org/10.1002/adem.201700711

    Article  Google Scholar 

  69. Yuksel Yilmaz AN, Yunus DE, Bedeloglu AC. (2022) Investigation of mechanical properties of hybrid stainless steel/acrylic and carbon fiber reinforced epoxy composite. J Compos Mater 2022:00219983221106249. https://doi.org/10.1177/00219983221106249

  70. Van Rooijen R (2006) Bearing strength characteristics of standard and steel reinforced Glare. vol 90–77172–21–1. Netherlands: Technische Universiteit Delft. https://www.elibrary.ru/item.asp?id=9384087

  71. Ostapiuk M, Loureiro MV, Bieniaś J, Marques AC (2021) Interlaminar shear strength study of Mg and carbon fiber-based hybrid laminates with self-healing microcapsules. Compos Struct 255:113042. https://doi.org/10.1016/j.compstruct.2020.113042

    Article  Google Scholar 

  72. Patil NA, Mulik SS, Wangikar KS, Kulkarni AP (2018) Characterization of glass laminate aluminium reinforced epoxy-a review. Procedia Manuf 20:554–562. https://doi.org/10.1016/j.promfg.2018.02.083

    Article  Google Scholar 

  73. Yaghoobi H, Taheri F (2021) Mechanical performance of a novel environmentally friendly basalt-Elium® thermoplastic composite and its stainless steel-based fiber metal laminate. Polym Compos 42(9):4660–4672. https://doi.org/10.1002/pc.26176

    Article  Google Scholar 

  74. Bhudolia SK, Perrotey P, Joshi SC (2018) Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid methylmethacrylate thermoplastic matrix. Compos B Eng 134:246–253. https://doi.org/10.1016/j.compositesb.2017.09.057

    Article  Google Scholar 

  75. Lystrup A, Andersen TL (1998) Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix. J Mater Process Technol 77(1–3):80–85. https://doi.org/10.1016/S0924-0136(97)00398-1

    Article  Google Scholar 

  76. Durai PR (2014) Are reactive thermoplastic polymers suitable for future wind turbine composite materials blades? Mech Adv Mater Struct 21(3):213–221. https://doi.org/10.1080/15376494.2013.834090

    Article  Google Scholar 

  77. Van Rijswijk K, Bersee H (2007) Reactive processing of textile fiber-reinforced thermoplastic composites–an overview. Compos A Appl Sci Manuf 38(3):666–681. https://doi.org/10.1016/j.compositesa.2006.05.007

    Article  Google Scholar 

  78. Hussain M, Imad A, Nawab Y, Saouab A, Herbelot C, Kanit T (2022) Effect of matrix and hybrid reinforcement on fibre metal laminates under low–velocity impact loading. Compos Struct 288:115371. https://doi.org/10.1016/j.compstruct.2022.115371

    Article  Google Scholar 

  79. Langdon GS, Von Klemperer C, Volschenk G, Van Tonder T, Govender R (2018) The influence of interfacial bonding on the response of lightweight aluminium and glass fibre metal laminate panels subjected to air-blast loading. Proc Inst Mech Eng C J Mech Eng Sci 232(8):1402–1417. https://doi.org/10.1177/0954406217718859

    Article  Google Scholar 

  80. Bhudolia SK, Perrotey P, Joshi SC (2017) Optimizing polymer infusion process for thin ply textile composites with novel matrix system. Materials 10(3):293. https://doi.org/10.3390/ma10030293

    Article  Google Scholar 

  81. Vlot A, Gunnink JW (2011) Fibre metal laminates: an introduction. Springer Science & Business Media. https://doi.org/10.1007/978-94-010-0995-9

  82. Prashanth S, Subbaya K, Nithin K, Sachhidananda S (2017) Fiber reinforced composites-a review. J Mater Sci 6(03):2–6. https://doi.org/10.4172/2169-0022.1000341

    Article  Google Scholar 

  83. Ekşı S, Genel K (2017) Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites. Special issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016). 132(3):879–82. https://doi.org/10.12693/APhysPolA.132.879

  84. Raghavendra G, Naidu PP, Ojha S, Vasavi B, Pachal M, Acharya SK (2019) Effect of bi-directional and multi-directional fibers on the mechanical properties of glass fiber-epoxy composites. Mater Res Express 6(11):115353. https://doi.org/10.1088/2053-1591/ab529a

    Article  Google Scholar 

  85. Tanwer AK (2014) Mechanical properties testing of uni-directional and bi-directional glass fibre reinforced epoxy based composites. Int J Res Advent Technol 2(11):34–9. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.653.6173&rep=rep1&type=pdf

  86. Kumaresan N, Vasanthaseelan S (2018) Mechanical characterization and comparison of glass fibre and fibre inforcement with aluminium alloy. Int J Eng Res Adv Dev 4(03)

  87. Qi X, Wu X, Gong Y, Ning H, Liu F, Zou R, Zhou S, Song Z, **ang C, Hu N (2021) Interlaminar mechanical properties of nano-and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. J Mater Sci 56(21):12198–12211. https://doi.org/10.1007/s10853-021-06003-z

    Article  Google Scholar 

  88. Ammar M, Osman SM, Hasan EH, Azab N (2019) A tensile characterization of random glass fiber/metal laminates composites. Mater Res Express 6(8):085349. https://doi.org/10.1088/2053-1591/ab2994

    Article  Google Scholar 

  89. Kühn F, Rehra J, May D, Schmeer S, Mitschang P (2019) Dry fiber placement of carbon/steel fiber hybrid preforms for multifunctional composites. Adv Manuf Polym Compos Sci 5(1):37–49. https://doi.org/10.1080/20550340.2019.1585027

    Article  Google Scholar 

  90. Kadiyala AK, Devlin K, Lee S, Comer A (2022) Manufacturing. Evaluation of the flexural properties and failure evolution of a hybrid composite manufactured by automated dry fibre placement followed by liquid resin infusion. Compos A: Appl Sci Manuf 154:106764. https://doi.org/10.1016/j.compositesa.2021.106764

  91. Grisin B, Carosella S, Middendorf P (2021) Dry fibre placement: the influence of process parameters on mechanical laminate properties and infusion behaviour. Polymers 13(21):3853. https://doi.org/10.3390/polym13213853

    Article  Google Scholar 

  92. Belhaj M, Deleglise M, Comas-Cardona S, Demouveau H, Binetruy C, Duval C, Figueiredo P (2013) Dry fiber automated placement of carbon fibrous preforms. Compos B Eng 50:107–111. https://doi.org/10.1016/j.compositesb.2013.01.014

    Article  Google Scholar 

  93. Hall W, Javanbakht Z (2021) How to make a composite-wet layup. Design and Manufacture of Fibre-Reinforced Composites. Springer, p 33–53. https://doi.org/10.1007/978-3-030-78807-0_3

  94. Kromik A, Underhill I, Javanbakht Z, Francucci G, Hall W (2022) Low-cost fabrication of high-performance composite structures using external compaction pressure. Mater Sci Technol 1–8. https://doi.org/10.1080/02670836.2022.2082641

  95. Esfandiari P, Silva JF, Novo PJ, Nunes JP, Marques AT (2022) Production and processing of pre-impregnated thermoplastic tapes by pultrusion and compression moulding. J Compos Mater 56(11):1667–1676. https://doi.org/10.1177/00219983221083841

    Article  Google Scholar 

  96. Martinsson F (2018) Development of robust automated handling of pre-impregnated carbon fibre. Linkö**, Sweden: Linkö** University | Division of Manufacturing Engineering. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1217999&dswid=-1769

  97. Martoïa F, Rouland H, Dkier M, Charmeau J-Y, Dumont P (2021) Fabrication of foldable composite structures obtained by selective curing of prepregs made of long-fibre reinforcements impregnated with UV-curable resin system. Appl Compos Mater 28(6):1781–1797. https://doi.org/10.1007/s10443-021-09942-7

    Article  Google Scholar 

  98. Donnini J, Lancioni G, Corinaldesi V (2018) Failure modes in FRCM systems with dry and pre-impregnated carbon yarns: experiments and modeling. Compos B Eng 140:57–67. https://doi.org/10.1016/j.compositesb.2017.12.024

    Article  Google Scholar 

  99. Manalo A, Sirimanna C, Karunasena W, McGarva L, Falzon P (2016) Pre-impregnated carbon fibre reinforced composite system for patch repair of steel I-beams. Constr Build Mater 105:365–376. https://doi.org/10.1016/j.conbuildmat.2015.12.172

    Article  Google Scholar 

  100. Wanhill R (2017) Glare®: A versatile fibre metal laminate (FML) concept. Aerosp Mater Mater Technol 2017:291–307. https://doi.org/10.1007/978-981-10-2134-3_13

  101. Mouritz AP (2012) Introduction to aerospace materials. Elsevier

  102. Sadighi M, Alderliesten R, Benedictus R (2012) Impact resistance of fiber-metal laminates: a review. Int J Impact Eng 49:77–90. https://doi.org/10.1016/j.ijimpeng.2012.05.006

    Article  Google Scholar 

  103. Logesh K, Bupesh RV (2019) Evaluation of mechanical properties of Mg-Al layered double hydroxide as a filler in epoxy-based FML composites. Int J Adv Manuf Technol 104(9):3267–3285. https://doi.org/10.1007/s00170-018-1692-8

    Article  Google Scholar 

  104. Sun S, Wu G, Sun L, Shan X, Li M, Ji S (2018) Effects of different surface treatments of aluminum alloy 5083 on interlaminar strength and anticorrosion properties of FMLs. Mater Res Express 5(11):116506. https://doi.org/10.1088/2053-1591/aad9d8

    Article  Google Scholar 

  105. Ostapiuk M, Bieniaś J (2021) Corrosion resistance in NaCl environment of fiber metal laminates based on aluminum and titanium alloys with carbon and glass fibers. Adv Eng Mater 23(3):2001030. https://doi.org/10.1002/adem.202001030

    Article  Google Scholar 

  106. Benedict AV (2012) An experimental investigation of GLARE and restructured fiber metal laminates. Aerospace Engineering. Embry-Riddle Aeronautical University. https://commons.erau.edu/edt/22

  107. De Aloysio G, Morganti M, Laghi L, Scafè M, Leoni E, Mingazzini C, Bassi S (2021) Characterization in expected working environments of recyclable fire-resistant materials. MATEC Web Conf 349:01009. https://doi.org/10.1051/matecconf/202134901009

    Article  Google Scholar 

  108. Grigoriou K, Mouritz A (2018) Modelling and testing of fibre metal laminates and their constituent materials in fire. Compos Struct 200:25–35. https://doi.org/10.1016/j.compstruct.2018.05.106

    Article  Google Scholar 

  109. dos Santos DG (2018) Optimization of CFRP joints with fibre metal laminates. U. Porto, Faculdade de Engenharia. https://repositorio-aberto.up.pt/bitstream/10216/113814/2/276828.pdf

  110. Voswinkel D, Kloidt D, Grydin O, Schaper M (2021) Time efficient laser modification of steel surfaces for advanced bonding in hybrid materials. Prod Eng Res Devel 15(2):263–270. https://doi.org/10.1007/s11740-020-01006-2

    Article  Google Scholar 

  111. Zheng X, Zhao Z, Chu Z, Yin H, Wang W (2021) Effect of surface treatment methods on the interfacial behavior of fiber metal laminate based on WE43 magnesium alloy. Int J Adhes Adhes 110:102957. https://doi.org/10.1016/j.ijadhadh.2021.102957

    Article  Google Scholar 

  112. Sinmazçelik T, Avcu E, Bora MÖ, Çoban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685. https://doi.org/10.1016/j.matdes.2011.03.011

    Article  Google Scholar 

  113. Shanmugam L, Kazemi ME, Yang J (2019) Improved bonding strength between thermoplastic resin and Ti alloy with surface treatments by multi-step anodization and single-step micro-arc oxidation method: a comparative study. ES Mater Manuf 3(4):57–65. https://doi.org/10.30919/esmm5f207

  114. Shang X, Marques E, Machado J, Carbas R, Jiang D, Da Silva L (2019) Review on techniques to improve the strength of adhesive joints with composite adherends. Compos B: Eng 177:107363. https://doi.org/10.1016/j.compositesb.2019.107363

    Article  Google Scholar 

  115. Dos Santos D, Carbas R, Marques E, da Silva L (2019) Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers. Compos B Eng 165:386–396. https://doi.org/10.1016/j.compositesb.2019.01.096

    Article  Google Scholar 

  116. Mamalis D, Obande W, Koutsos V, Blackford JR, Brádaigh CMÓ, Ray D (2019) Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: the effect of surface treatments on interfacial bonding. Mater Des 162:331–344. https://doi.org/10.1016/j.matdes.2018.11.048

    Article  Google Scholar 

  117. Khan F, Qayyum F, Asghar W, Azeem M, Anjum Z, Nasir A, Shah M (2017) Effect of various surface preparation techniques on the delamination properties of vacuum infused carbon fiber reinforced aluminum laminates (CARALL): experimentation and numerical simulation. J Mech Sci Technol 31(11):5265–5272. https://doi.org/10.1007/s12206-017-1019-y

    Article  Google Scholar 

  118. Ramasamy N, Xavier JF, Ramadoss R, Jayaseelan V, Jayabalakrishnan D (2021) Interfacial performance of treated aluminum and Kevlar fibre on fibre metal laminated composites. AIP Conf Proc 2395(1):020010. https://doi.org/10.1063/5.0068167

    Article  Google Scholar 

  119. Wu X, Zhan L, Zhao X, Wang X, Chang T (2020) Effects of surface pre-treatment and adhesive quantity on interface characteristics of fiber metal laminates. Compos Interfaces 27(9):829–843. https://doi.org/10.1080/09276440.2019.1707023

    Article  Google Scholar 

  120. Zhang X, Ma Q, Dai Y, Hu F, Liu G, Xu Z, Wei G, Xu T, Zeng Q, **e W (2018) Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy. Appl Surf Sci 427:897–906. https://doi.org/10.1016/j.apsusc.2017.09.024

    Article  Google Scholar 

  121. Khalid M, Al Rashid A, Sheikh M (2021) Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: experimental and numerical approach. Exp Tech 45(2):227–235. https://doi.org/10.1007/s40799-020-00433-1

    Article  Google Scholar 

  122. Alshamma FA, Kadhim MM (2022) Optimization of delamination resistance of vacuum infused glass laminate aluminum reinforced epoxy (GLARE) using various surface preparation techniques. Period Eng Nat Sci 10(1):361–75. https://doi.org/10.21533/pen.v10i1.2621

  123. Xu Y, Li H, Shen Y, Liu S, Wang W, Tao J (2016) Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. Int J Adhes Adhes 70:74–80. https://doi.org/10.1016/j.ijadhadh.2016.05.007

    Article  Google Scholar 

  124. Marceau JA (2017) Phosphoric acid anodize. Adhesive bonding of aluminum alloys. Routledge. p 51–74

  125. Nijssen R (2015) Composite materials: an introduction. Inholland University of Applied Sciences Netherlands. https://compositesnl.nl/wp-content/uploads/2020/02/branded-book-toray-advanced-composites.pdf

  126. Arhore EG, Yasaee M (2020) Lay-up optimisation of fibre–metal laminates panels for maximum impact absorption. J Compos Mater 54(29):4591–4609. https://doi.org/10.1177/0021998320937396

    Article  Google Scholar 

  127. Salve A, Kulkarni R, Mache A (2016) A review: fiber metal laminates (FML’s)-manufacturing, test methods and numerical modeling. Int J Eng Technol Sci 3(2):71–84. https://doi.org/10.15282/ijets.6.2016.1.10.1060

  128. Sinke J (2009) Manufacturing principles of fiber metal laminates. ICCM-17: Int Conf Compos Mater 2009:1–10

  129. Alderliesten RC (2005) Fatigue crack propagation and delamination growth in Glare. Aerospace Engineering. Delft University Press. http://resolver.tudelft.nl/uuid:15006e44-1232-4ef2-87bd-776b249d61f5

  130. Alderliesten R (2009) On the development of hybrid material concepts for aircraft structures. J Recent Patents Eng 3(1):25–38. https://doi.org/10.2174/187221209787259893

    Article  Google Scholar 

  131. Ding Z, Wang H, Luo J, Li N (2021) A review on forming technologies of fibre metal laminates. Int J Light Mater Manuf 4(1):110–126. https://doi.org/10.1016/j.ijlmm.2020.06.006

    Article  Google Scholar 

  132. Wu G, Yang J-M (2005) Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates. Modell Simul Mater Sci Eng 13(3):413. https://doi.org/10.1088/0965-0393/13/3/010

    Article  Google Scholar 

  133. Lee B-E, Park E-T, Kim J, Kang B-S, Song W-J (2014) Analytical evaluation on uniaxial tensile deformation behavior of fiber metal laminate based on SRPP and its experimental confirmation. Compos B Eng 67:154–159. https://doi.org/10.1016/j.compositesb.2014.06.031

    Article  Google Scholar 

  134. Rathnasabapathy M, Orifici A, Mouritz A (2022) Impact damage to fibre metal laminates under compression loading. Compos Commun 32:101148. https://doi.org/10.1016/j.coco.2022.101148

    Article  Google Scholar 

  135. Sun J, Daliri A, Lu G, Ruan D, Lv Y (2019) Tensile failure of fibre-metal-laminates made of titanium and carbon-fibre/epoxy laminates. Mater Des 183:108139. https://doi.org/10.1016/j.matdes.2019.108139

    Article  Google Scholar 

  136. Long AC (2014) Composites forming technologies. Elsevier

  137. Megahed M, Abd El-baky M, Alsaeedy A, Alshorbagy A (2019) An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Compos B: Eng 176:107277. https://doi.org/10.1016/j.compositesb.2019.107277

    Article  Google Scholar 

  138. Ostapiuk M, Bieniaś J, Surowska B (2018) Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. Sci Eng Compos Mater 25(6):1095–1106. https://doi.org/10.1515/secm-2017-0180

    Article  Google Scholar 

  139. ** K, Wang H, Tao J, Du D (2019) Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model. Appl Sci Manuf 124:105490. https://doi.org/10.1016/j.compositesa.2019.105490

    Article  Google Scholar 

  140. Purnowidodo A, Sutedja DBD, Anam K (2020) Tensile strength and fatigue crack growth behaviour of natural fibre metal laminates. J Eng Sci Technol 15(4):2809–22. http://jestec.taylors.edu.my/Vol%2015%20issue%204%20August%202020/15_4_46.pdf

  141. Subramaniam K, Dhar Malingam S, Feng NL, Bapokutty O (2019) The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polym Compos 40(2):568–577. https://doi.org/10.1002/pc.24691

    Article  Google Scholar 

  142. Isiktas A, Taskin V (2020) Springback behavior of fiber metal laminates with carbon fiber-reinforced core in V-bending process. Arab J Sci Eng 45(11):9357–9366. https://doi.org/10.1007/s13369-020-04796-w

    Article  Google Scholar 

  143. Hu C, Sang L, Jiang K, **ng J, Hou W (2022) Experimental and numerical characterization of flexural properties and failure behavior of CFRP/Al laminates. Compos Struct 281:115036. https://doi.org/10.1016/j.compstruct.2021.115036

    Article  Google Scholar 

  144. Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, Tao G, Tao J (2016) Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos B Eng 97:361–367. https://doi.org/10.1016/j.compositesb.2016.05.003

    Article  Google Scholar 

  145. Trzepieciński T, Najm SM, Sbayti M, Belhadjsalah H, Szpunar M, Lemu HG (2021) New advances and future possibilities in forming technology of hybrid metal–polymer composites used in aerospace applications. J Compos Sci 5(8):217. https://doi.org/10.3390/jcs5080217

    Article  Google Scholar 

  146. Wang J, Li J, Fu C, Zhang G, Zhu W, Li X, Yanagimoto J (2021) Study on influencing factors of bending springback for metal fiber laminates. Compos Struct 261:113558. https://doi.org/10.1016/j.compstruct.2021.113558

    Article  Google Scholar 

  147. Hahn M, Ben Khalifa N, Weddeling C, Shabaninejad A (2016) Springback behavior of carbon-fiber-reinforced plastic laminates with metal cover layers in V-die bending. J Manuf Sci Eng 138(12). https://doi.org/10.1115/1.4034627

  148. Li H, Tian J, Fei W, Han Z, Tao G, Xu Y, Xu X, Tao J (2019) Spring-back and failure characteristics of roll bending of GLARE laminates. Mater Res Express 6(8):0865b2. https://doi.org/10.1088/2053-1591/ab2109

    Article  Google Scholar 

  149. Sinke J (2003) Manufacturing of GLARE parts and structures. Appl Compos Mater 10(4):293–305. https://doi.org/10.1023/A:1025589230710

    Article  Google Scholar 

  150. Dariushi S, Rezadoust AM, Kashizadeh R (2019) Effect of processing parameters on the fabrication of fiber metal laminates by vacuum infusion process. Polym Compos 40(11):4167–4174. https://doi.org/10.1002/pc.25277

    Article  Google Scholar 

  151. Che L, Fang G, Wu Z, Ma Y, Zhang J, Zhou Z (2020) Investigation of curing deformation behavior of curved fiber metal laminates. Compos Struct 232:111570. https://doi.org/10.1016/j.compstruct.2019.111570

    Article  Google Scholar 

  152. Dariushi S, Farahmandnia S, Rezadoust AM (2021) An experimental investigation on infusion time and strength of fiber metal laminates made by vacuum infusion process. Proc Inst Mech Eng L: J Mater Des Appl 235(8):1800–1808. https://doi.org/10.1177/1464420720941890

    Article  Google Scholar 

  153. Jensen BJ, Cano RJ, Hales SJ, Alexa JA, Weiser ES, Loos A, Johnson W (2009) Fiber metal laminates made by the VARTM process. ICCM-17 17th International Conference on Composite Materials (LF99–8038). https://ntrs.nasa.gov/api/citations/20090028660/downloads/20090028660.pdf

  154. Irani M, Kuhtz M, Zapf M, Ullmann M, Hornig A, Gude M, Prahl U (2021) Investigation of the deformation behaviour and resulting ply thicknesses of multilayered fibre–metal laminates. J Compos Sci 5(7):176. https://doi.org/10.3390/jcs5070176

    Article  Google Scholar 

  155. Holleman E, van Praag R (1995) On the minimum bend radius of some GLARE 2 and GLARE 3 grades Delft University of Technology, Faculty of Aerospace Engineering, memorandum m-686. http://resolver.tudelft.nl/uuid:ee8d62f0-9b08-4762-8bed-c051370b2027

  156. Keipour S, Gerdooei M (2019) Springback behavior of fiber metal laminates in hat-shaped draw bending process: experimental and numerical evaluation. Int J Adv Manuf Technol 100(5):1755–1765. https://doi.org/10.1007/s00170-018-2766-3

    Article  Google Scholar 

  157. Zavala JMD, Gutiérrez HML, Segura-Cárdenas E, Mamidi N, Morales-Avalos R, Villela-Castrejón J, Elías-Zúñiga A (2021) Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. J Mech Behav Biomed Mater 120:104554. https://doi.org/10.1016/j.jmbbm.2021.104554

    Article  Google Scholar 

  158. Rimašauskas M, Juzėnas K, Rimašauskienė R, Pupelis E (2014) The research of single point incremental forming process for composite mould production. Mechanics 20(4):414–419. https://doi.org/10.5755/j01.mech.20.4.7045

    Article  Google Scholar 

  159. Sridhar R, Rajenthirakumar D (2016) Incremental forming of polymer-numerical and experimental investigation. Polym Polym Compos 24(7):489–498. https://doi.org/10.1177/096739111602400707

    Article  Google Scholar 

  160. Clavijo-Chaparro S, Iturbe-Ek J, Lozano-Sánchez L, Sustaita A, Elías-Zúñiga A (2018) Plasticized and reinforced poly (methyl methacrylate) obtained by a dissolution-dispersion process for single point incremental forming: enhanced formability towards the fabrication of cranial implants. Polym Testing 68:39–45. https://doi.org/10.1016/j.polymertesting.2018.03.034

    Article  Google Scholar 

  161. Hou C, Su X, Peng X, Wu X, Yang D (2020) Thermal-assisted single point incremental forming of jute fabric reinforced poly (lactic acid) biocomposites. Fibers Polym 21(10):2373–2379. https://doi.org/10.1007/s12221-020-1016-0

    Article  Google Scholar 

  162. Kharche A, Barve S (2022) Incremental sheet forming of composite material. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.02.447

    Article  Google Scholar 

  163. Jackson K, Allwood J, Landert M (2008) Incremental forming of sandwich panels. J Mater Process Technol 204(1–3):290–303. https://doi.org/10.1016/j.jmatprotec.2007.11.117

    Article  Google Scholar 

  164. Fiorotto M, Sorgente M, Lucchetta G (2010) Preliminary studies on single point incremental forming for composite materials. IntJ Mater Form 3(1):951–954. https://doi.org/10.1007/s12289-010-0926-6

    Article  Google Scholar 

  165. Girjob C, Racz G (2017) Study of the formability of laminated lightweight metallic materials. MATEC Web of Conferences 121:03008. https://doi.org/10.1051/matecconf/201712103008

    Article  Google Scholar 

  166. Davarpanah MA, Malhotra R (2018) Formability and failure modes in single point incremental forming of metal-polymer laminates. Procedia Manuf 26:343–348. https://doi.org/10.1016/j.promfg.2018.07.042

    Article  Google Scholar 

  167. Harhash M, Palkowski H (2021) Incremental sheet forming of steel/polymer/steel sandwich composites. J Market Res 13:417–430. https://doi.org/10.1016/j.jmrt.2021.04.088

    Article  Google Scholar 

  168. Le VS, Ghiotti A, Lucchetta G (2008) Preliminary studies on single point incremental forming for thermoplastic materials. IntJ Mater Form 1(1):1179–1182. https://doi.org/10.1007/s12289-008-0191-0

    Article  Google Scholar 

  169. Franzen V, Kwiatkowski L, Martins P, Tekkaya A (2009) Single point incremental forming of PVC. J Mater Process Technol 209(1):462–469. https://doi.org/10.1016/j.jmatprotec.2008.02.013

    Article  Google Scholar 

  170. Mohammadi A, Vanhove H, Attisano M, Ambrogio G, Duflou JR (2015) Single point incremental forming of shape memory polymer foam. MATEC Web Conf 21:04007. https://doi.org/10.1051/matecconf/20152104007

    Article  Google Scholar 

  171. Lozano-Sánchez LM, Bagudanch I, Sustaita AO, Iturbe-Ek J, Elizalde LE, Garcia-Romeu ML, Elías-Zúñiga A (2018) Single-point incremental forming of two biocompatible polymers: an insight into their thermal and structural properties. Polymers 10(4):391. https://doi.org/10.3390/polym10040391

    Article  Google Scholar 

  172. Formisano A, Lambiase F, Durante M (2020) Polymer self-heating during incremental forming. J Manuf Process 58:1189–1199. https://doi.org/10.1016/j.jmapro.2020.09.031

    Article  Google Scholar 

  173. Lozano-Sánchez L, Sustaita A, Soto M, Biradar S, Ge L, Segura-Cárdenas E, Diabb J, Elizalde LE, Barrera EV, Elías-Zúñiga A (2017) Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets. J Mater Process Technol 242:218–227. https://doi.org/10.1016/j.jmatprotec.2016.11.032

    Article  Google Scholar 

  174. Conte R, Ambrogio G, Pulice D, Gagliardi F, Filice L (2017) Incremental sheet forming of a composite made of thermoplastic matrix and glass-fiber reinforcement. Procedia Eng 207:819–824. https://doi.org/10.1016/j.proeng.2017.10.835

    Article  Google Scholar 

  175. Ambrogio G, Conte R, Gagliardi F, De Napoli L, Filice L, Russo P (2018) A new approach for forming polymeric composite structures. Compos Struct 204:445–453. https://doi.org/10.1016/j.compstruct.2018.07.106

    Article  Google Scholar 

  176. Okada M, Kato T, Otsu M, Tanaka H, Miura T (2018) Development of optical-heating-assisted incremental forming method for carbon fiber reinforced thermoplastic sheet—forming characteristics in simple spot-forming and two-dimensional sheet-fed forming. J Mater Process Technol 256:145–153. https://doi.org/10.1016/j.jmatprotec.2018.02.014

    Article  Google Scholar 

  177. Borić A, Kalendová A, Urbanek M, Pepelnjak T (2019) Characterisation of polyamide (PA) 12 nanocomposites with montmorillonite (MMT) filler clay used for the incremental forming of sheets. Polymers 11(8):1248. https://doi.org/10.3390/polym11081248

    Article  Google Scholar 

  178. Amar A-O, Kunke A, Kräusel V (2019) Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J Manuf Process 43:17–25. https://doi.org/10.1016/j.jmapro.2019.04.036

    Article  Google Scholar 

  179. Hernández-Ávila M, Lozano-Sánchez L, Perales-Martínez I, Elías-Zúñiga A, Bagudanch I, García-Romeu M, Elizalde LE, Barrera EV (2019) Single point incremental forming of bilayer sheets made of two different thermoplastics. J Appl Polym Sci 136(8):47093. https://doi.org/10.1002/app.47093

    Article  Google Scholar 

  180. Liu Z, Li G (2019) Single point incremental forming of Cu-Al composite sheets: a comprehensive study on deformation behaviors. Arch Civil Mech Eng 19(2):484–502. https://doi.org/10.1016/j.acme.2018.11.011

    Article  Google Scholar 

  181. Abdelkader WB, Bahloul R, Arfa H (2020) Numerical investigation of the influence of some parameters in SPIF process on the forming forces and thickness distributions of a bimetallic sheet CP-titanium/low-carbon steel compared to an individual layer. Procedia Manuf 47:1319–1327. https://doi.org/10.1016/j.promfg.2020.04.252

    Article  Google Scholar 

  182. Thirukumaran M, Siva I, Jappes JW, Manikandan V (2018) Forming and drilling of fiber metal laminates–a review. J Reinf Plast Compos 37(14):981–990. https://doi.org/10.1177/0731684418771194

    Article  Google Scholar 

  183. Safari M, Alves de Sousa R, Joudaki J (2020) Recent advances in the laser forming process: a review. Metals 10(11):1472. https://doi.org/10.3390/met10111472

    Article  Google Scholar 

  184. Watkins K, Edwardson S, Magee J, Dearden G, French P, Cooke R, Sidhu J, Calder N (2001) Laser forming of aerospace alloys. AMTC, Seattle, Soc Automot Eng 2001–01:2610. https://doi.org/10.4271/2001-01-2610

    Article  Google Scholar 

  185. Edwardson S, French P, Dearden G, Watkins K, Cantwell W (2005) Laser forming of fibre metal laminates. Lasers Eng 15(3):233–55. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.506.8259&rep=rep1&type=pdf

  186. Carey C (2009) Laser forming of fibre metal laminates. University of Liverpool, Department of Engineering. UK

    Google Scholar 

  187. Carey C, Cantwell WJ, Dearden G, Edwards KR, Edwardson SP, Watkins KG (2010) Towards a rapid, non-contact sha** method for fibre metal laminates using a laser source. Int J Adv Manuf Technol 47(5):557–565. https://doi.org/10.1007/s00170-009-2229-y

    Article  Google Scholar 

  188. Hu Y, Zheng X, Wang D, Zhang Z, **e Y, Yao Z (2015) Application of laser peen forming to bend fibre metal laminates by high dynamic loading. J Mater Process Technol 226:32–39. https://doi.org/10.1016/j.jmatprotec.2015.07.003

    Article  Google Scholar 

  189. Seyedkashi S, Cho J, Lee S, Moon Y (2018) Feasibility of underwater laser forming of laminated metal composites. Mater Manuf Process 33(5):546–551. https://doi.org/10.1080/10426914.2017.1376075

    Article  Google Scholar 

  190. Zhang Z, Hu Y, Yao Z (2017) Shape prediction for laser peen forming of fiber metal laminates by experimentally determined eigenstrain. J Manuf Sci Eng 139(4). https://doi.org/10.1115/1.4034891

  191. Gisario A, Barletta M (2018) Laser forming of glass laminate aluminium reinforced epoxy (GLARE): on the role of mechanical, physical and chemical interactions in the multi-layers material. Opt Lasers Eng 110:364–376. https://doi.org/10.1016/j.optlaseng.2018.06.013

    Article  Google Scholar 

  192. Gisario A, Mehrpouya M, Rahimzadeh A, De Bartolomeis A, Barletta M (2020) Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites. Adv Manuf 8(2):242–251. https://doi.org/10.1007/s40436-020-00304-3

    Article  Google Scholar 

  193. Yang Y, Zhou W, Tong Z, Chen L, Ren X (2021) Delamination in titanium-based carbon-fibre/epoxy laminates under laser shock peening. Optics Laser Technol 143:107282. https://doi.org/10.1016/j.optlastec.2021.107282

    Article  Google Scholar 

  194. Kulkarni KM, Schey JA, Badger DV (1981) Investigation of shot peening as a forming process for aircraft wing skins. J Appl Metalwork 1(4):34–44. https://doi.org/10.1007/BF02834344

    Article  Google Scholar 

  195. Friese A, Lohmar J, Wüstefeld F (2003) Current applications of advanced peen forming implementation. Shot Peening 53–61. https://doi.org/10.1002/3527606580.ch7

  196. Russig C, Bambach M, Hirt G, Holtmann N (2014) Shot peen forming of fiber metal laminates on the example of GLARE®. IntJ Mater Form 7(4):425–438. https://doi.org/10.1007/s12289-013-1137-8

    Article  Google Scholar 

  197. Hu Y, Zhang W, Jiang W, Cao L, Shen Y, Li H, Guan Z, Tao J, Xu J (2016) Effects of exposure time and intensity on the shot peen forming characteristics of Ti/CFRP laminates. Compos A Appl Sci Manuf 91:96–104. https://doi.org/10.1016/j.compositesa.2016.09.019

    Article  Google Scholar 

  198. Li H, Zhang W, Jiang W, Hua X, Guo X, Fu X, Tao J (2018) The feasibility research on shot-peen forming of the novel fiber metal laminates based on aluminum-lithium alloy. Int J Adv Manuf Technol 96(1):587–596. https://doi.org/10.1007/s00170-018-1627-4

    Article  Google Scholar 

  199. Zheng K, Politis DJ, Wang L, Lin J (2018) A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. Int J Light Mater Manuf 1(2):55–80. https://doi.org/10.1016/j.ijlmm.2018.03.006

    Article  Google Scholar 

  200. Hahn M, Khalifa NB, Shabaninejad A (2018) Prediction of process forces in fiber metal laminate stam**. J Manuf Sci Eng 140(3). https://doi.org/10.1115/1.4038369

  201. Mosse L, Compston P, Kalyanasundaram S, Cardew-Hall M, Cantwell W (2004) Forming characteristics of aluminium and glass-reinforced thermoplastic fibre-metal laminates. Composite Technologies for 2020. Elsevier. p 852–7. https://doi.org/10.1016/B978-1-85573-831-7.50144-9

  202. Kalyanasundaram S, DharMalingam S, Venkatesan S, Sexton A (2013) Effect of process parameters during forming of self reinforced–PP based fiber metal laminate. Compos Struct 97:332–337. https://doi.org/10.1016/j.compstruct.2012.08.053

    Article  Google Scholar 

  203. Mennecart T, Hiegemann L, Khalifa NB (2017) Analysis of the forming behaviour of in-situ drawn sandwich sheets. Procedia Eng 207:890–895. https://doi.org/10.1016/j.proeng.2017.10.847

    Article  Google Scholar 

  204. Mosse L, Cantwell WJ, Cardew-Hall M, Compston P, Kalyanasundaram S (2005) A study of the effect of process variables on the stamp forming of rectangular cups using fibre-metal laminate systems. Adv Mater Res 6:649–656. https://doi.org/10.4028/www.scientific.net/AMR.6-8.649

    Article  Google Scholar 

  205. Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S (2006) Stamp forming of polypropylene based fibre–metal laminates: the effect of process variables on formability. J Mater Process Technol 172(2):163–168. https://doi.org/10.1016/j.jmatprotec.2005.09.002

    Article  Google Scholar 

  206. Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S (2005) The effect of process temperature on the formability of polypropylene based fibre–metal laminates. Compos A Appl Sci Manuf 36(8):1158–1166. https://doi.org/10.1016/j.compositesa.2005.01.009

    Article  Google Scholar 

  207. Behrens B-A, Hübner S, Neumann A (2014) Forming sheets of metal and fibre-reinforced plastics to hybrid parts in one deep drawing process. Procedia Eng 81:1608–1613. https://doi.org/10.1016/j.proeng.2014.10.198

    Article  Google Scholar 

  208. Zal V, Naeini HM, Bahramian AR, Sinke J (2017) Investigation of the effect of temperature and layup on the press forming of polyvinyl chloride-based composite laminates and fiber metal laminates. Int J Adv Manuf Technol 89(1):207–217. https://doi.org/10.1007/s00170-016-9075-5

    Article  Google Scholar 

  209. Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S (2006) The development of a finite element model for simulating the stamp forming of fibre–metal laminates. Compos Struct 75(1–4):298–304. https://doi.org/10.1016/j.compstruct.2006.04.009

    Article  Google Scholar 

  210. DharMalingam S, Compston P, Kalyanasundaram S (2009) Process variables optimisation of polypropylene based fibre-metal laminates forming using finite element analysis. Key Eng Mater 410:263–269. https://doi.org/10.4028/www.scientific.net/KEM.410-411.263

    Article  Google Scholar 

  211. Gresham J, Cantwell W, Cardew-Hall M, Compston P, Kalyanasundaram S (2006) Drawing behaviour of metal–composite sandwich structures. Compos Struct 75(1–4):305–312. https://doi.org/10.1016/j.compstruct.2006.04.010

    Article  Google Scholar 

  212. Mennecart T, Werner H, Ben Khalifa N, Weidenmann KA (2018) Developments and analyses of alternative processes for the manufacturing of fiber metal laminates. Int Manuf Sci Eng Conf 51364:V002T04A1. https://doi.org/10.1115/MSEC2018-6447

  213. Sexton A, Cantwell W, Kalyanasundaram S (2012) Stretch forming studies on a fibre metal laminate based on a self-reinforcing polypropylene composite. Compos Struct 94(2):431–437. https://doi.org/10.1016/j.compstruct.2011.08.004

    Article  Google Scholar 

  214. Sexton A, Venkatesan S, Cantwell WJ, Kalyanasundaram S (2012) Experimental and numerical characterisation of the out-of-plane stretch forming of a fibre metal laminate based on a self-reinforced polypropylene composite. CCM15 - 15th European Conference On Composite Materials. http://hdl.handle.net/1885/22961

  215. Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S, Mosse L (2004) Comparison of surface strain for stamp formed aluminum and an aluminum-polypropylene laminate. J Mater Sci 39(19):6087–6088. https://doi.org/10.1023/B:JMSC.0000041707.68685.72

    Article  Google Scholar 

  216. Dou X, Tunggal D (2015) Finite element modeling of stamp forming process on thermoplastic-based fiber metal laminates at elevated temperatures. World J Eng Technol 3(03):253. https://doi.org/10.4236/wjet.2015.33C037

    Article  Google Scholar 

  217. Kalyanasundaram S, Dhar Malingam S, Venkatesan S (2012) Forming analysis of composite and fibre-metal laminate systems. ECCM15 – 15th European Conference on Composite Materials 24–8. https://openresearch-repository.anu.edu.au/bitstream/1885/23898/2/01_Kalyanasundaram_Forming_Analysis_of_Composite_2012.pdf.

  218. Logesh K, Raja VB, Velu R (2015) Experimental investigation for characterization of formability of epoxy based fiber metal laminates using Erichsen cup** test method. Indian J Sci Technol 8(33):1. https://doi.org/10.17485/ijst/2015/v8i33/72244

  219. Rajabi A, Kadkhodayan M (2014) An investigation into the deep drawing of fiber-metal laminates based on glass fiber reinforced polypropylene. Int J Eng 27:349–58. https://doi.org/10.5829/idosi.ije.2014.27.03c.01

    Article  Google Scholar 

  220. Dau J, Lauter C, Damerow U, Homberg W, Tröster T (2011) Multi-material systems for tailored automotive structural components. Proceedings of the 18th International Conference on Composite Materials, Jeju Island, Korea 21–6

  221. Bernd-Arno B, Sven H, Nenad G, Moritz M-C, Tim W, André N (2017) Forming and joining of carbon-fiber-reinforced thermoplastics and sheet metal in one step. Procedia Eng 183:227–232. https://doi.org/10.1016/j.proeng.2017.04.026

    Article  Google Scholar 

  222. Wollmann T, Hahn M, Wiedemann S, Zeiser A, Jaschinski J, Modler N, Khalifa N, Meißen F, Paul C (2018) Thermoplastic fibre metal laminates: stiffness properties and forming behaviour by means of deep drawing. Arch Civil Mech Eng 18(2):442–450. https://doi.org/10.1016/j.acme.2017.09.001

    Article  Google Scholar 

  223. Lee M-S, Kim S-J, Lim O-D, Kang C-G (2014) Effect of process parameters on epoxy flow behavior and formability with CR340/CFRP composites by different laminating in deep drawing process. Procedia Eng 81:1627–1632. https://doi.org/10.1016/j.proeng.2014.10.202

    Article  Google Scholar 

  224. Guo Y, Zhai C, Li F, Zhu X, Xu F, Wu X (2019) Formability, defects and strengthening effect of steel/CFRP structures fabricated by using the differential temperature forming process. Compos Struct 216:32–38. https://doi.org/10.1016/j.compstruct.2019.01.106

    Article  Google Scholar 

  225. Nam J, Cantwell W, Das R, Lowe A, Kalyanasundaram S (2016) Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains. Adv Aircr Spacecr Sci 3(1):061. https://doi.org/10.12989/aas.2016.3.1.061

  226. Nam J, Cantwell W, Das R, Lowe A, Kalyanasundaram S (2014) Evolution of meridian strains in stamp forming of steel-based fibre metal laminate. Proceedings of the 8th Australasian Congress on Applied Mechanics 2014 (ACAM 8) 1005–12. https://search.informit.org/doi/10.3316/informit.394266429858974

  227. Nam J, Cantwell W, Das R, Lowe A, Kalyanasundaram S (2014) Effect of blank holder force on strain evolution of forming of steel/SRPP fibre metal laminate. 8th Australasian Congress on Applied Mechanics, ACAM 8. http://hdl.handle.net/1885/53082

  228. Behrens BA, Vucetic M, Neumann A, Osiecki T, Grbic N (2015) Experimental test and FEA of a sheet metal forming process of composite material and steel foil in sandwich design using LS-DYNA. Key Eng Mater 651:439–445. https://doi.org/10.4028/www.scientific.net/KEM.651-653.439

    Article  Google Scholar 

  229. Rahiminejad D, Lowe A, Kalyanasundaram S (2017) Effect of temperature on the forming of steel based fibre metal laminate systems. 9th Australasian Congress on Applied Mechanics (ACAM9):621–7. https://search.informit.org/doi/10.3316/informit.394266429858974.

  230. Heggemann T, Homberg W (2019) Deep drawing of fiber metal laminates for automotive lightweight structures. J Compos Struct 216:53–57. https://doi.org/10.1016/j.compstruct.2019.02.047

    Article  Google Scholar 

  231. Werner HO, Dörr D, Henning F, Kärger L (2019) Numerical modeling of a hybrid forming process for three-dimensionally curved fiber-metal laminates. AIP Conf Proc 2113(1):020019. https://doi.org/10.1063/1.5112524

    Article  Google Scholar 

  232. Rajabi A, Kadkhodayan M, Manoochehri M, Farjadfar R (2015) Deep-drawing of thermoplastic metal-composite structures: experimental investigations, statistical analyses and finite element modeling. J Mater Process Technol 215:159–170. https://doi.org/10.1016/j.jmatprotec.2014.08.012

    Article  Google Scholar 

  233. Saadatfard A, Gerdooei M, Jalali AA (2020) Drawing potential of fiber metal laminates in hydromechanical forming: a numerical and experimental study. J Sandwich Struct Mater 22(5):1386–1403. https://doi.org/10.1177/1099636218785208

    Article  Google Scholar 

  234. Mennecart T, Gies S, Ben Khalifa N, Tekkaya AE (2019) Analysis of the influence of fibers on the formability of metal blanks in manufacturing processes for fiber metal laminates. J Manuf Mater Process 3(1):2. https://doi.org/10.3390/jmmp3010002

    Article  Google Scholar 

  235. Liu S, Lang L, Sherkatghanad E, Wang Y, Xu W (2018) Investigation into the Fiber orientation effect on the formability of GLARE materials in the stamp forming process. Appl Compos Mater 25(2):255–267. https://doi.org/10.1007/s10443-017-9615-7

    Article  Google Scholar 

  236. Sumana B, Vidya Sagar H, Sharma K, Krishna M (2015) Numerical analysis of the effect of fiber orientation on hydrostatic buckling behavior of fiber metal composite cylinder. J Reinf Plast Compos 34(17):1422–1432. https://doi.org/10.1177/0731684415592261

    Article  Google Scholar 

  237. Blala H, Lang L, Li L, Alexandrov S (2021) Deep drawing of fiber metal laminates using an innovative material design and manufacturing process. Compos Commun 23:100590. https://doi.org/10.1016/j.coco.2020.100590

    Article  Google Scholar 

  238. Blala H, Lang L, Sherkatghanad E, Li L (2019) An investigation into process parameters effect on the formability of GLARE materials using stamp forming. Appl Compos Mater 26(5):1423–1436. https://doi.org/10.1007/s10443-019-09788-0

    Article  Google Scholar 

  239. Blala H, Lang L, Li L, Khan S, Alexandrov S (2020) Process control improvement in deep drawing of hemispherical cups made of GLARE material. MATEC Web Conf 319:04003. https://doi.org/10.1051/matecconf/202031904003

    Article  Google Scholar 

  240. Glushchenkov V, Chernikov D, Erisov Y, Petrov I, Alexandrov S, Lang LH (2019) Electro-magnetic forming of fiber metal laminates. Key Eng Mater 794:107–112. https://doi.org/10.4028/www.scientific.net/KEM.794.107

    Article  Google Scholar 

  241. Khardin M, Harhash M, Chernikov D, Glushchenkov V, Palkowski H (2020) Preliminary studies on electromagnetic forming of aluminum/polymer/aluminum sandwich sheets. Compos Struct 252:112729. https://doi.org/10.1016/j.compstruct.2020.112729

    Article  Google Scholar 

  242. Zafar R, Lihui L, Rong**g Z (2015) Analysis of hydro-mechanical deep drawing and the effects of cavity pressure on quality of simultaneously formed three-layer Al alloy parts. Int J Adv Manuf Technol 80(9):2117–2128. https://doi.org/10.1007/s00170-015-7142-y

    Article  Google Scholar 

  243. Zafar R, Lang L, Zhang R (2016) Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology. IntJ Mater Form 9(1):35–47. https://doi.org/10.1007/s12289-014-1198-3

    Article  Google Scholar 

  244. Blala H, Lang L, Li L, Sherkatghanad E, Alexandrov S (2020) Investigation on the effect of blank holder gap in the hydroforming of cylindrical cups, made of fiber metal laminate. Int J Adv Manuf Technol 108(9):2727–2740. https://doi.org/10.1007/s00170-020-05467-8

    Article  Google Scholar 

  245. Land P, Crossley R, Branson D, Ratchev S (2016) Technology review of thermal forming techniques for use in composite component manufacture. SAE Int J Mater Manuf 9(1):81–9. http://www.jstor.org/stable/26268806

  246. Tatsuno D, Yoneyama T, Kawamoto K, Okamoto M (2018) Hot press forming of thermoplastic CFRP sheets. Procedia Manuf 15:1730–1737. https://doi.org/10.1016/j.promfg.2018.07.254

    Article  Google Scholar 

  247. Chen Y-C (1991) Elevated temperature deformation and forming of aluminum-matrix composites. Ohio State University The Ohio State University. https://www.proquest.com/openview/5ae62926eea4adbb15e0b47e9575f7db/1?pq-origsite=gscholar&cbl=18750&diss=y

  248. Da Cunha Saraiva F (2017) Development of press forming techniques for thermoplastic composites: investigation of a multiple step forming approach. Aerospace Engineering. Delft University of Technology. http://resolver.tudelft.nl/uuid:28226034-774c-4a5e-a11a-39106f55da53

  249. Xu W, Ma C, Li C, Feng W (2004) Sensitive factors in springback simulation for sheet metal forming. J Mater Process Technol 151(1–3):217–222. https://doi.org/10.1016/j.jmatprotec.2004.04.044

    Article  Google Scholar 

  250. Lin J (2015) Fundamentals of materials modelling for metals processing technologies: theories and applications. World Scientific Publishing Company. https://doi.org/10.1142/p951

  251. Wijskamp S, Lamers E, Akkerman R (2005) Spring-forward in composite plate elements. Proceedings oft he 8th EsaformConferece on material Forming. pp 943–6. https://ris.utwente.nl/ws/portalfiles/portal/5389905/Wijskamp05spring.pdf

  252. Wisnom M, Potter K (2007) Understanding composite distortion during processing. Composite Forming Technologies. Woodhead Publishing Limited. pp 177–95

  253. Hosford WF, Duncan JL (1999) Sheet metal forming: a review. JOM 51(11):39–44. https://doi.org/10.1007/s11837-999-0221-5

    Article  Google Scholar 

  254. Long A, Rudd C (1994) A simulation of reinforcement deformation during the production of preforms for liquid moulding processes. Proc Inst Mech Eng B: J Eng Manuf 208(4):269–278. https://doi.org/10.1243/PIME_PROC_1994_208_088_02

    Article  Google Scholar 

  255. Prodromou A, Chen J (1997) On the relationship between shear angle and wrinkling of textile composite preforms. Compos A Appl Sci Manuf 28(5):491–503. https://doi.org/10.1016/S1359-835X(96)00150-9

    Article  Google Scholar 

  256. Zheng B, Gao X, Li M, Deng T, Huang Z, Zhou H, Li D (2019) Formability and failure mechanisms of woven CF/PEEK composite sheet in solid-state thermoforming. Polymers 11(6):966. https://doi.org/10.3390/polym11060966

    Article  Google Scholar 

  257. Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71(5):683–92. https://doi.org/10.1016/j.compscitech.2011.01.011

  258. Potter K (2002) In-plane and out-of-plane deformation properties of unidirectional preimpregnated reinforcement. Compos A Appl Sci Manuf 33(11):1469–1477. https://doi.org/10.1016/S1359-835X(02)00138-0

    Article  Google Scholar 

  259. Obermeyer E, Majlessi SA (1998) A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts. J Mater Process Technol 75(1–3):222–234. https://doi.org/10.1016/S0924-0136(97)00368-3

    Article  Google Scholar 

  260. Reyes G, Kang H (2007) Mechanical behavior of lightweight thermoplastic fiber–metal laminates. J Mater Process Technol 186(1–3):284–290. https://doi.org/10.1016/j.jmatprotec.2006.12.050

    Article  Google Scholar 

  261. Atzema EH (2016) Formability of sheet metal and sandwich laminates. University of Queensland, School of Mechanical and Mining Engineering

    Google Scholar 

  262. Reiner J (2016) A computational investigation of failure modes in hybrid titanium composite laminates

  263. . Rodi R, Alderliesten R, Benedictus R (2009) An experimental approach to investigate detailed failure mechanisms in fibre metal laminates. ICAF 2009, Bridging the Gap between Theory and Operational Practice. Springer. p 493-512.https://doi.org/10.1007/978-90-481-2746-7_28

  264. De Jong T, Kroon E, Sinke J (2001) Formability. Fibre Metal Laminates. Springer. p 337–53. https://doi.org/10.1007/978-94-010-0995-9_22

  265. Hu Y, Li H, Cai L, Zhu J, Pan L, Xu J, Tao J (2015) Preparation and properties of fibre–metal laminates based on carbon fibre reinforced PMR polyimide. Compos B Eng 69:587–591. https://doi.org/10.1016/j.compositesb.2014.11.011

    Article  Google Scholar 

  266. Pan Y, Wu G, Cheng X, Zhang Z, Li M, Ji S, Huang Z (2016) Mode I and mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates. Compos Interfaces 23(5):453–465. https://doi.org/10.1080/09276440.2016.1144911

    Article  Google Scholar 

  267. Dragan K, Kornas Ł, Kosmatka M, Leski A, Sałaciński M, Synaszko P, Bieniaś J (2012) Damage detection and size quantification of FML with the use of NDE. Fatigue Aircr Struct. https://doi.org/10.2478/v10164-012-0051-8

    Article  Google Scholar 

  268. Dragan K, Bieniaś J, Sałaciński M, Synaszko P (2011) Inspection methods for quality control of fibre metal laminates in aerospace components. Composites 11:130–5. https://kompozyty.ptmk.net/.

  269. Backman D, Patterson EA (2014) A comparison of the effect of riveting and cold expansion on the strain distribution and fatigue performance of fiber metal laminates. J Strain Anal Eng Des 49(3):141–153. https://doi.org/10.1177/0309324713493082

    Article  Google Scholar 

  270. Katunin A, Dragan K, Dziendzikowski M (2015) Damage identification in aircraft composite structures: a case study using various non-destructive testing techniques. Compos Struct 127:1–9. https://doi.org/10.1016/j.compstruct.2015.02.080

    Article  Google Scholar 

  271. Bu C, Liu G, Zhang X, Tang Q (2020) Debonding defects detection of FMLs based on long pulsed infrared thermography technique. Infrared Phys Technol 104:103074. https://doi.org/10.1016/j.infrared.2019.103074

    Article  Google Scholar 

  272. Simas Filho EF, Souza YN, Lopes JL, Farias CT, Albuquerque MC (2013) Decision support system for ultrasound inspection of fiber metal laminates using statistical signal processing and neural networks. Ultrasonics 53(6):1104–1111. https://doi.org/10.1016/j.ultras.2013.02.005

    Article  Google Scholar 

  273. Nardi D, Abouhamzeh M, Leonard R, Sinke J (2018) Detection and evaluation of pre-preg gaps and overlaps in glare laminates. Appl Compos Mater 25(6):1491–1507. https://doi.org/10.1007/s10443-018-9679-z

    Article  Google Scholar 

  274. Adamus K, Adamus J, Lacki J (2018) Ultrasonic testing of thin walled components made of aluminum based laminates. Compos Struct 202:95–101. https://doi.org/10.1016/j.compstruct.2017.12.007

    Article  Google Scholar 

  275. Ibarra-Castanedo C, Avdelidis NP, Grinzato EG, Bison PG, Marinetti S, Plescanu CC, Bendada A, Maldague XP (2011) Delamination detection and impact damage assessment of GLARE by active thermography. Int J Mater Prod Technol 41(1–4):5–16. https://doi.org/10.1504/IJMPT.2011.040282

    Article  Google Scholar 

  276. Jakubczak P, Bienias J (2019) Non-destructive damage detection in fibre metal laminates. J Nondestr Eval 38(2):1–10. https://doi.org/10.1007/s10921-019-0588-3

    Article  Google Scholar 

  277. Jakubczak P, Nardi D, Bieniaś J, Sinke J (2021) Non-destructive testing investigation of gaps in thin GLARE laminates. Nondestruct Test Eval 36(1):17–34. https://doi.org/10.1080/10589759.2019.1684489

    Article  Google Scholar 

  278. Bieniaś J (2011) Fibre metal laminates-some aspects of manufacturing process, structure and selected properties. Composites 11(1):39–43. https://kompozyty.ptmk.net/pliczki/pliki/8_2011_t1_Bienias.pdf

  279. Fahr A, Chapman C, Forsyth D, Poon C, Laliberté J (2000) Nondestructive evaluation methods for damage assessment in fiber-metal laminates. Polym Compos 21(4):568–575. https://doi.org/10.1002/pc.10212

    Article  Google Scholar 

  280. Dragan K, Bieniaś J, Leski A, Czulak A, Hufenbach W (2012) Inspection methods for quality control of fibre metal laminates (FML) in the aerospace components. XVI Seminarium Kompozyty. https://kompozyty.ptmk.net/pliczki/pliki/_10_2012_t4_Dragan.pdf

  281. Hergan P, Li Y, Zaloznik L, Kaynak B, Arbeiter F, Fauster E, Schledjewski R (2018) Using (VA) RTM with a rigid mould to produce fibre metal laminates with proven impact strength. J Manuf Mater Process 2(2):38. https://doi.org/10.3390/jmmp2020038

    Article  Google Scholar 

  282. Vlot A, Vogelesang L, De Vries T (1999) Towards application of fibre metal laminates in large aircraft. Aircr Eng Aerosp Technol. https://doi.org/10.1108/00022669910303711

    Article  Google Scholar 

  283. Vlot A, Massar JA, Guijt C, Verhoeven S (2000) Bonded aircraft repairs under variable amplitude fatigue loading and at low temperatures. Fatigue Fract Eng Mater Struct 23(1):9–18. https://doi.org/10.1046/j.1460-2695.2000.00250.x

    Article  Google Scholar 

  284. Bonavolontà C, Valentino M, Pepe G (2006) Characterization of the damage process in GLARE® 2 using an eddy current technique based on HTS-SQUID magnetometer. Supercond Sci Technol 20(1):51. https://doi.org/10.1088/0953-2048/20/1/009

    Article  Google Scholar 

  285. Bonavolonta C, Valentino M, Marrocco N, Pepe GP (2009) Eddy Current technique based on HTc-SQUID and GMR sensors for non-destructive evaluation of fiber/metal .laminates. IEEE Trans Appl Supercond 19(3):808–11. https://doi.org/10.1109/TASC.2009.2019197

  286. Bonavolonta C, Pepe G, Peluso G, Valentino M, Caprino G, Lopresto V (2005) Electromagnetic non-destructive evaluation of fiberglass/aluminum laminates using HTS SQUID magnetometers. IEEE Trans Appl Supercond 15(2):711–714. https://doi.org/10.1109/TASC.2005.850021

    Article  Google Scholar 

  287. Ghaffari M, Saeb MR, Ramezanzadeh B, Taheri P (2016) Demonstration of epoxy/carbon steel interfacial delamination behavior: electrochemical impedance and X-ray spectroscopic analyses. Corros Sci 102:326–337. https://doi.org/10.1016/j.corsci.2015.10.024

    Article  Google Scholar 

  288. Thum F, Zott M, Sause MG (2020) Scan quality optimization for measuring fiber-metal-laminates with X-ray computed tomography. 10th Conference on Industrial Computed Tomography (iCT). https://www.ndt.net/article/ctc2020/papers/ICT2020_paper_id138.pdf

  289. Chernikov D, Erisov Y, Petrov I, Alexandrov S, Lang L (2019) Research of different processes for forming fiber metal laminates. Int J Automot Technol 20(1):89–93. https://doi.org/10.1007/s12239-019-0131-7

    Article  Google Scholar 

  290. Kötter B, Karsten J, Körbelin J, Fiedler B (2020) CFRP thin-ply fibre metal laminates: influences of ply thickness and metal layers on open hole tension and compression properties. Materials 13(4):910. https://doi.org/10.3390/ma13040910

    Article  Google Scholar 

  291. Roth S, Stoll M, Weidenmann K, Coutandin S, Fleischer J (2019) A new process route for the manufacturing of highly formed fiber-metal-laminates with elastomer interlayers (FMEL). Int J Adv Manuf Technol 104(1):1293–1301. https://doi.org/10.1007/s00170-019-04103-4

    Article  Google Scholar 

  292. Bu C-W, Zhao B, Liu T, Liu G-Z, Liao C-Y, Tang Q-J (2020) Infrared thermal imaging detection of debonding defects in carbon fiber reinforced polymer based on pulsed thermal wave excitation. Therm Sci 24(6 Part B):3887–92. https://doi.org/10.2298/TSCI2006887B

  293. Zeng F, Zhang S, Wang T, Wu Q (2021) Mini-crack detection of conveyor belt based on laser excited thermography. Appl Sci 11(22):10766. https://doi.org/10.3390/app112210766

    Article  Google Scholar 

  294. Montinaro N, Cerniglia D, Pitarresi G (2018) Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT and E Int 98:134–146. https://doi.org/10.1016/j.ndteint.2018.05.004

    Article  Google Scholar 

  295. Montinaro N, Cerniglia D, Pitarresi G (2017) Detection and characterisation of disbonds on fibre metal laminate hybrid composites by flying laser spot thermography. Compos B Eng 108:164–173. https://doi.org/10.1016/j.compositesb.2016.09.084

    Article  Google Scholar 

  296. Rahiminejad D, Compston P (2021) The effect of pre-heat temperature on the formability of a glass-fibre/polypropylene and steel-based fibre–metal laminate. IntJ Mater Form 14(4):715–727. https://doi.org/10.1007/s12289-020-01566-9

    Article  Google Scholar 

  297. Kalidass K, Raghavan V (2022) Numerical and experimental investigations On GFRP and Aa 6061 laminate composites for deep-drawing applications. Mater Technol 56(2):107–14-–14. https://doi.org/10.17222/mit.2022.364

  298. Li L, Lang L, Hamza B, Alexandrov S, Li S (2022) The influence of different compositions of fiber metal laminates on the fracture in the semi-solidified stam** forming. Int J Damage Mech 31(8):1254–1270. https://doi.org/10.1177/1056789520954475

    Article  Google Scholar 

  299. Islam MA, Wei Q, Wang Y, Sumon F (2021) Analyzing the formability of reinforced glass fiber metal laminates in isothermal conditions. North Am Acad Res (NAAR) J 282-93. https://doi.org/10.5281/zenodo4718565

  300. Sherkatghanad E, Lang L, Liu S, Wang Y (2018) Innovative approach to mass production of fiber metal laminate sheets. Mater Manuf Process 33(5):552–563. https://doi.org/10.1080/10426914.2017.1364864

    Article  Google Scholar 

  301. Liu S, Lang L, Guan S, Alexandrov S, Zeng Y (2019) Investigation into composites property effect on the forming limits of multi-layer hybrid sheets using hydroforming technology. Appl Compos Mater 26(1):205–217. https://doi.org/10.1007/s10443-018-9689-x

    Article  Google Scholar 

  302. Sherkatghanad E, Lang LH, Liu SC (2018) Multilayer and fiber metal laminate materials hydro-bulging. Mater Sci Forum 941:1996–2005. https://doi.org/10.4028/www.scientific.net/MSF.941.1996

    Article  Google Scholar 

  303. Shichen L, Lihui L, Shiwei G (2019) An investigation into the formability and processes of GLARE materials using hydro-bulging test. Int J Precis Eng Manuf 20(1):121–128. https://doi.org/10.1007/s12541-019-00046-8

    Article  Google Scholar 

  304. Blala H, Lang LH, Sherkatghanad E, Li L (2020) GLARE hydro-mechanical deep drawing analysis based on the forming depth. Mater Sci Forum 982:75–84. https://doi.org/10.4028/www.scientific.net/MSF.982.75

    Article  Google Scholar 

  305. Blala H, Lang L, Khan S, Li L, Alexandrov S (2021) An analysis of process parameters in the hydroforming of a hemispherical dome made of fiber metal laminate. Appl Compos Mater 28(3):685–704. https://doi.org/10.1007/s10443-021-09884-0

    Article  Google Scholar 

  306. Tabasum MN, Lang L, Mirza HA, Meng Z, Blala H (2022) Numerical and experimental investigations on the effects of variable cavity pressure on the formability of GLARE using hydromechanical deep drawing. Int J Adv Manuf Technol 119(9):6091–6101. https://doi.org/10.1007/s00170-021-08518-w

    Article  Google Scholar 

  307. Blala H, Lang L, Khan S, Alexandrov S (2020) Experimental and numerical investigation of fiber metal laminate forming behavior using a variable blank holder force. Prod Eng Res Devel 14(4):509–522. https://doi.org/10.1007/s11740-020-00974-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this research would like to extend their special gratitude to Professor Lang Lihui, who, although no longer with us, continues to guide the team by his example and dedication to the students he oversaw during his career.

Funding

This research work is supported by the National Science Foundation of China (51675029) and the Science and Technology Project of Sichuan Province (2019YFSY0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Blala.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blala, H., Lang, L., Khan, S. et al. Forming challenges of small and complex fiber metal laminate parts in aerospace applications—a review. Int J Adv Manuf Technol 126, 2509–2543 (2023). https://doi.org/10.1007/s00170-023-11247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11247-x

Keywords

Navigation