Log in

Research on imminent enlargements of smart materials and structures towards novel 4D printing (4DP: SMs-SSs)

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Smart structures of 4D printing are perhaps interdisciplinary research area with significant development and applicability future. The cornerstone of 4D printing is smart materials. When a stimulus is put in front of this structure, it changes into a different structure. This article initially provides a succinct insight of the aforementioned 4DP: SMs-SSs: 4D printing (4DP) technology imminent enlargements of smart material’s (SMs) prospective to physique smart structure (SSs). Investigation into 4D printing has pulled in phenomenal enthusiasm. The research work of 4DP: SMs-SSs has stimulated promising future. The paper discusses smart materials and their potential towards mainstream 4D printing for smart constructions (4DP: SMs-SSs). Cursory research write-up on smart materials associated 4D printing approaches to process them based on adaptability to stimuli, fabrication, control mechanisms, multi physics modeling, and existing as well as emerging functionalities. Indeed, innovative structural initiatives could perhaps inspire new paradigms for stimulate positive structures. Novelty structures are being thoroughly researched, and new ideas will be incorporated. Programmability, reactivity toward and adaptability to their circumstances, and automation are all functionality of 4D-printed items. The article’s conclusion is that 4DP: SMs that can create intelligent/smart structures (SSs) will even trigger a massive era of construction material. This article shows an insight into how quickly technology is changing, how some researchers and scholars are figuring out what it can do, and how engineers could use the ideas. The adoption of smart materials will assist in resolving the problem to a greater extent. 4D printing relies on shape memory alloys/polymers (SMAs/SMPs) as so forth organic materials. Imminent enlargements of smart materials prospective to physique smart structures are still being experimented with by scientists and engineers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The fact used to support the outcomes of this study is contained inside the paper.

References s

  1. Paoletti I (2018) Blaine Brownell, TRANSMATERIAL next- a catalog of materials that redefine our future. TECHNE - Journal of Technology for Architecture and Environment 16:339. https://doi.org/10.13128/Techne-24244

  2. Kauffman GB, Mayo I (1997) The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2. https://doi.org/10.1007/s00897970111a

  3. Akbar I, El Hadrouz M, El Mansori M, Lagoudas D (2022) Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review. Eur Polym J 168. https://doi.org/10.1016/j.eurpolymj.2022.111106

  4. Zhang Z, Demir KG, Gu GX (2019) Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater 10. https://doi.org/10.1080/19475411.2019.1591541

  5. ISO/TC 261 Additive Manufacturing (2021) ISO/ASTM52900:2021(en), Additive manufacturing — General principles — Fundamentals and vocabulary. Int Organ Stand. https://www.iso.org/standard/74514.html

  6. International Organization for Standardization (2017) ENISO/ASTM 52900:2017. Addit Fert - Grundlagen –Terminol. https://doi.org/10.31030/2631641

  7. Roh BM, Kumara SRT, Simpson TW et al (2016) Ontology-based laser and thermal metamodels for metal-based additive manufacturing. In: Proceedings of the ASME Design Engineering Technical Conference

    Book  Google Scholar 

  8. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing and direct digital manufacturing, Springer, New York. Johnson Matthey Technol Rev 59. https://doi.org/10.1007/978-1-4939-2113-3

  9. Sanfilippo EM, Belkadi F, Bernard A (2019) Ontology-based knowledge representation for additive manufacturing. Comput Ind 109. https://doi.org/10.1016/j.compind.2019.03.006

  10. Leist SK, Gao D, Chiou R, Zhou J (2017) Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyp 12. https://doi.org/10.1080/17452759.2017.1341815

  11. Invernizzi M, Turri S, Levi M, Suriano R (2018) 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur Polym J 101. https://doi.org/10.1016/j.eurpolymj.2018.02.023

  12. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science (80-):295. https://doi.org/10.1126/science.1070821

  13. Liu D, Aleisa R, Cai Z et al (2021) Self-assembly of superstructures at all scales. Matter 4. https://doi.org/10.1016/j.matt.2020.12.020

  14. Momeni F, Hassani NSMM, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79. https://doi.org/10.1016/j.matdes.2017.02.068

    Article  Google Scholar 

  15. Monzón MD, Paz R, Pei E et al (2017) 4D printing: processability and measurement of recovery force in shape memory polymers. Int J Adv Manuf Technol 89. https://doi.org/10.1007/s00170-016-9233-9

  16. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54. https://doi.org/10.1016/j.polymer.2013.02.023

  17. Jeong HY, An SC, Seo IC et al (2019) 3D printing of twisting and rotational bistable structures with tuning elements. Sci Rep 9. https://doi.org/10.1038/s41598-018-36936-6

  18. Stuart-Fox D, Moussalli A (2008) Selection for social signalling drives the evolution of chameleon colour change. PLoS Biol 6. https://doi.org/10.1371/journal.pbio.0060025

  19. Leng J (2013) Plants and mechanical motion – a synthetic approach to nastic materials and structures. Int J Smart Nano Mater 4. https://doi.org/10.1080/19475411.2012.744884

  20. Ding D, Pan Z, Cuiuri D et al (2016) Advanced design for additive manufacturing: 3D slicing and 2D path planning. New Trends in 3D Printing. https://doi.org/10.5772/63042

    Book  Google Scholar 

  21. Farid MI, Wu W, Liu X, Wang PP (2021) Additive manufacturing landscape and materials perspective in 4D printing. Int J Adv Manuf Technol 115: 2973–2988. https://doi.org/10.1007/s00170-021-07233-w

  22. Ding D, Pan Z, Cuiuri D et al (2016) Advanced design for additive manufacturing: 3D slicing and 2D path planning. In: New Trends in 3D Printing https://doi.org/10.1007/s00170-021-07233-w

  23. Duarte J, Espírito Santo I, T. Monteiro MT, F Vaz AI (2022) Curved layer path planning on a 5-axis 3D printer. Rapid Prototyp J 28. https://doi.org/10.1108/RPJ-02-2021-0025

  24. Nam S, Pei E (2019) A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers. Prog Addit Manuf 4:167–184. https://doi.org/10.1007/s40964-019-00079-5

    Article  Google Scholar 

  25. Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl Phys Lett 103. https://doi.org/10.1063/1.4819837

  26. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84. https://doi.org/10.1002/ad.1710

  27. Raviv D, Zhao W, McKnelly C et al (2014) Active printed materials for complex self-evolving deformations. Sci Rep 4. https://doi.org/10.1038/srep07422

  28. Pei E (2014) 4D Printing: dawn of an emerging technology cycle. Assembly Automation 34(4):310–314. https://doi.org/10.1108/AA-07-2014-062

    Article  Google Scholar 

  29. Kotikian A, Truby RL, Boley JW et al (2018) 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mate 30. https://doi.org/10.1002/adma.201706164

  30. Ding Z, Yuan C, Peng X et al (2017) Direct 4D printing via active composite materials. Sci Adv 3. https://doi.org/10.1126/sciadv.1602890

  31. Kuksenok O, Balazs AC (2016) Stimuli-responsive behavior of composites integrating thermo-responsive gels with photoresponsive fibers. Mater Horizons 3. https://doi.org/10.1039/c5mh00212e

  32. Yang H, Leow WR, Wang T et al (2017) 3D printed photoresponsive devices based on shape memory composites. Adv Mater 29. https://doi.org/10.1002/adma.201701627

  33. Kanu NJ, Gupta E, Vates UK, Singh GK (2019) An insight into biomimetic 4D printing. RSC Adv 9. https://doi.org/10.1039/C9RA07342F

  34. Sydney Gladman A, Matsumoto EA, Nuzzo RG et al (2016) Biomimetic 4D printing. Nat Mater 15. https://doi.org/10.1038/nmat4544

  35. Nadgorny M, **ao Z, Chen C, Connal LA (2016) Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces 8. https://doi.org/10.1021/acsami.6b07388

  36. Shin DG, Kim TH, Kim DE (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf - Green Technol 4. https://doi.org/10.1007/s40684-017-0040-z

  37. Wu JJ, Huang LM, Zhao Q et al (2018) 4D printing: history and recent progress. Chin J Polym Sci 36:563–575. https://doi.org/10.1007/s10118-018-2089-8

    Article  Google Scholar 

  38. Choi J, Kwon OC, Jo W et al (2015) 4D printing technology: A review. 3D Print Addit Manuf 2. https://doi.org/10.1089/3dp.2015.0039

  39. Tibbits S, McKnelly C, Olguin C et al (2014) 4D printing and universal transformation. In: ACADIA 2014 - Design Agency: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture

    Google Scholar 

  40. Qin B, Chong ZJ, Bandyopadhyay T et al (2012) Curb-intersection feature based Monte Carlo localization on urban roads. Proc IEEE Int Conf Robot Autom

  41. Cui C, Kim DO, Pack MY et al (2020) 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication 12. https://doi.org/10.1088/1758-5090/aba502

  42. Zhang K, Kimball JS, Nemani RR et al (2015) Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci Rep 5. https://doi.org/10.1038/srep15956

  43. Momeni F, Ni J (2020) Laws of 4D printing. Engineering 6. https://doi.org/10.1016/j.eng.2020.01.015

  44. Thakur S, Hu J (2017) Polyurethane: a Shape Memory Polymer (SMP). Aspects of Polyurethanes. https://doi.org/10.5772/intechopen.69992

  45. Choong YYC, Maleksaeedi S, Eng H et al (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126. https://doi.org/10.1016/j.matdes.2017.04.049

  46. Zhang F, Zhang Z, Zhou T et al (2015) Shape memory polymer nanofibers and their composites: Electrospinning, structure, performance, and applications. Front Mater 2. https://doi.org/10.3389/fmats.2015.00062

  47. Xu J, Song J (2011) Thermal responsive shape memory polymers for biomedical applications. Biomedical Engineering - Frontiers and Challenges. https://doi.org/10.5772/19256

  48. Wu W, Ye W, Wu Z et al (2017) Influence of layer thickness, raster angle, deformation temperature and recovery temperature on the shape-memory effect of 3D-printed polylactic acid samples. Materials (Basel) 10. https://doi.org/10.3390/ma10080970

  49. Lauff C, Simpson TW, Frecker M et al (2014) Differentiating bending from folding in origami engineering using active materials. Proceedings of the ASME Design Engineering Technical Conference

    Book  Google Scholar 

  50. Khoo ZX, Teoh JEM, Liu Y et al (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10. https://doi.org/10.1080/17452759.2015.1097054

  51. Breger JC, Yoon C, ** mobile microrobots. Proc Natl Acad Sci U S A 117. https://doi.org/10.1073/pnas.1920099117

  52. Luan C, Yao X, Zhang C et al (2020) Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos Sci Technol 188. https://doi.org/10.1016/j.compscitech.2019.107986

  53. Li X, Yu R, He Y et al (2019) Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett 8. https://doi.org/10.1021/acsmacrolett.9b00766

  54. Han D, Farino C, Yang C et al (2018) Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces 10. https://doi.org/10.1021/acsami.8b04250

  55. Bharti B, Kumar S, Lee HN, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6. https://doi.org/10.1038/srep32355

  56. Zomer RJ, Neufeldt H, Xu J et al (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep:6. https://doi.org/10.1038/srep29987

  57. Yuan W, Zheng Y, Piao S et al (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv 5. https://doi.org/10.1126/sciadv.aax1396

  58. Ji Y, Luan C, Yao X et al (2021) Recent progress in 3D printing of smart structures: classification, challenges, and trends. Adv Intell Syst 3. https://doi.org/10.1002/aisy.202170081

  59. Wang W, Ouaras K, Rutz AL et al (2020) Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci Adv 6. https://doi.org/10.1126/sciadv.aba0931

  60. Chia PY, Coleman KK, Tan YK et al (2020) Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun 11. https://doi.org/10.1038/s41467-020-16670-2

  61. Zhou LY, Gao Q, Fu JZ et al (2019) Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl Mater Interfaces 11. https://doi.org/10.1021/acsami.9b04873

  62. Fang JH, Hsu HH, Hsu RS et al (2020) 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater 12. https://doi.org/10.1038/s41427-020-00244-1

  63. Zhang P, Wu X, Gardashova G et al (2020) Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci Transl Med 12. https://doi.org/10.1126/scitranslmed.aaz2878

  64. Derakhshandeh H, Aghabaglou F, McCarthy A et al (2020) A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Adv Funct Mater 30. https://doi.org/10.1002/adfm.201905544

  65. **n X, Liu L, Liu Y, Leng J (2020) Origami-inspired self-deployment 4D printed honeycomb sandwich structure with large shape transformation. Smart Mater Struct 29. https://doi.org/10.1088/1361-665X/ab85a4

  66. Boley JW, Van Rees WM, Lissandrello C et al (2019) Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci U S A 116. https://doi.org/10.1073/pnas.1908806116

  67. Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. CAD Comput Aided Des 81. https://doi.org/10.1016/j.cad.2016.08.006

  68. Chen T, Bilal OR, Shea K, Daraio C (2018) Harnessing bistability for directional propulsion of soft, untethered robots. Proc Natl Acad Sci U S A 115. https://doi.org/10.1073/pnas.1800386115

  69. Garces IT, Ayranci C (2021) Advances in additive manufacturing of shape memory polymer composites. Rapid Prototyp J 27. https://doi.org/10.1108/RPJ-07-2020-0174

  70. Zhang YF, Zhang N, Hingorani H et al (2019) Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv Funct Mater 29. https://doi.org/10.1002/adfm.201806698

  71. Kuang X, Chen K, Dunn CK et al (2018) 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl Mater Interfaces 10. https://doi.org/10.1021/acsami.7b18265

  72. Tabatabaei M, Atluri SN (2021) Ultralight metallic/composite materials with architected cellular structures. Mech Mach Sci 97:20–28. https://doi.org/10.1007/978-3-030-64690-5_3

    Article  Google Scholar 

  73. Kim K, Guo Y, Bae J et al (2021) 4D printing of hygroscopic liquid crystal elastomer actuators. Small 17. https://doi.org/10.1002/smll.202100910

  74. Zarek M, Layani M, Cooperstein I et al (2016) 3D Printing: 3D printing of shape memory polymers for flexible electronic devices (Adv. Mater. 22/2016). Adv Mater 28. https://doi.org/10.1002/adma.201503132

  75. Bakarich SE, Gorkin R, In PM, Het SGM (2015) 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun 36. https://doi.org/10.1002/marc.201500079

  76. Teoh JEM, An J, Chua CK et al (2017) Hierarchically self-morphing structure through 4D printing. Virtual Phys Prototyp 12. https://doi.org/10.1080/17452759.2016.1272174

  77. Zhu P, Yang W, Wang R et al (2018) 4D Printing of complex structures with a fast response time to magnetic stimulus. ACS Appl Mater Interfaces 10. https://doi.org/10.1021/acsami.8b12853

  78. Joyee EB, Pan Y (2019) Multi-material additive manufacturing of functional soft robot. https://doi.org/10.1016/j.promfg.2019.06.221

  79. Nguyen CT, Phung H, Jung H et al (2015) Printable monolithic hexapod robot driven by soft actuator. Proceedings – IEEE International Conference on Robotics and Automation

    Book  Google Scholar 

  80. Mea HJ, Delgadillo L, Wan J (2020) On-demand modulation of 3D-printed elastomers using programmable droplet inclusions. Proc Natl Acad Sci U S A 117. https://doi.org/10.1073/pnas.1917289117

  81. Wehner M, Truby RL, Fitzgerald DJ et al (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536. https://doi.org/10.1038/nature19100

  82. Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots. Sci Robot 4. https://doi.org/10.1126/SCIROBOTICS.AAX7329

  83. **glei Y, Keller MW, Moore JS et al (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41. https://doi.org/10.1021/ma801718v

  84. Loebel C, Rodell CB, Chen MH, Burdick JA (2017) Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 12. https://doi.org/10.1038/nprot.2017.053

  85. Hu SW, Sung PJ, Nguyen TP et al (2020) UV-resistant self-healing emulsion glass as a new liquid-like solid material for 3D printing. ACS Appl Mater Interfaces 2. https://doi.org/10.1021/acsami.0c04121

  86. Hansen CJ, Wu W, Toohey KS et al (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21. https://doi.org/10.1002/adma.200900588

  87. Li Z, Souza LR de, Litina C et al (2019) Feasibility of using 3D Printed polyvinyl alcohol (PVA) for creating self-healing vascular tunnels in cement system. Materials (Basel) 12. https://doi.org/10.3390/ma12233872

  88. Li Z, Souza LR de, Litina C et al (2020) A novel biomimetic design of a 3D vascular structure for self-healing in cementitious materials using Murray’s law. Mater Des 190. https://doi.org/10.1016/j.matdes.2020.108572

  89. Peng S, Li Y, Wu L et al (2020) 3D printing mechanically robust and transparent polyurethane elastomers for stretchable electronic sensors. ACS Appl Mater Interfaces 12. https://doi.org/10.1021/acsami.9b20631

  90. Ntagios M, Nassar H, Pullanchiyodan A et al (2020) Robotic hands with intrinsic tactile sensing via 3D printed soft pressure sensors. Adv Intell Syst 2. https://doi.org/10.1002/aisy.201900080

  91. Leigh SJ, Bradley RJ, Purssell CP et al (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7. https://doi.org/10.1371/journal.pone.0049365

  92. Ouellette ES (2016) Novel methods and self-reinforced composite materials for assessment and prevention of mechanically assisted corrosion in modular implants. https://surface.syr.edu/etd/449

  93. Mohamed OA, Masood SH, Bhowmik JL (2016) Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Meas J Int Meas Confed 81. https://doi.org/10.1016/j.measurement.2015.12.011

  94. Garces IT, Aslanzadeh S, Boluk Y, Ayranci C (2019) Effect of moisture on shape memory polyurethane polymers for extrusion-based additive manufacturing. Materials (Basel)12. https://doi.org/10.3390/ma12020244

  95. Shape Memory Effects in Alloys (1975) https://doi.org/10.1007/978-1-4684-2211-5

  96. Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1. https://doi.org/10.1177/1045389X9000100205

  97. Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8. https://doi.org/10.1177/1045389X9700800402

  98. Ghandi K, Hagood NW (1995) Shape memory ceramic actuation of adaptive structures. AIAA J 33. https://doi.org/10.2514/3.12962

  99. Barsoum RGS (1997) Active materials and adaptive structures [for naval applications]. Smart Mater Struct 6. https://doi.org/10.1088/0964-1726/6/1/014

  100. Lagoudas DC, Rediniotis OK, Khan MM (2000) Applications of shape memory alloys in biomedical engineering. https://doi.org/10.29322/IJSRP.10.09.2020.p10549

  101. Cianchetti M, Licofonte A, Follador M et al (2014) Bioinspired soft actuation system using shape memory alloys. Actuators 3. https://doi.org/10.3390/act3030226

  102. Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater. https://doi.org/10.4028/www.scientific.net/AMM.663.248

  103. Riccio A, Sellitto A, Ameduri S et al (2021) Shape memory alloys (SMA) for automotive applications and challenges. In: Shape memory alloy engineering: for aerospace, structural, and biomedical applications. https://doi.org/10.1016/C2018-0-02430-5

    Chapter  Google Scholar 

  104. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56. https://doi.org/10.1016/j.matdes.2013.11.084

  105. Savage SJ (1991) Engineering aspects of shape memory alloys. Surf Eng 7. https://doi.org/10.1179/sur.1991.7.4.299

  106. Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275. https://doi.org/10.1016/S0921-5093(99)00293-2

  107. Mertmann M (2004) Non-medical applications of NiTinol. Minim Invasive Ther Allied Technol 13. https://doi.org/10.1080/S13645700410018055

  108. Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng A 378. https://doi.org/10.1016/j.msea.2003.10.326

  109. Laschi C, Cianchetti M (2014) oft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol 2. https://doi.org/10.3389/fbioe.2014.00003

  110. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56. https://doi.org/10.1016/j.matdes.2013.11.084

  111. Balasubramanian M, Srimath R, Vignesh L, Rajesh S (2021) Application of shape memory alloys in engineering - A review. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2054/1/012078

  112. Mazzolai B, Margheri L, Cianchetti M et al (2012) Soft-robotic arm inspired by the octopus: II. from artificial requirements to innovative technological solutions. Bioinspir Biomimetics 7. https://doi.org/10.1088/1748-3182/7/2/025005

  113. Ben UA (2010) Development and application of new material systems for three dimensional printing (3DP). J Manuf Sci Eng 132(1):011008. https://doi.org/10.1115/1.4000713

  114. Motzki P, Seelecke S (2022) Industrial applications for shape memory alloys. https://doi.org/10.1016/B978-0-12-803581-8.11723-0

  115. Zarek M, Layani M, Cooperstein I et al (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28. https://doi.org/10.1002/adma.201503132

  116. Yang WG, Lu H, Huang WM et al (2014) Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers (Basel) 6. https://doi.org/10.3390/polym6082287

  117. Srivastava V, Chester SA, Ames NM, Anand L (2010) A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int J Plast 26. https://doi.org/10.1016/j.ijplas.2010.01.004

  118. Tee BCK, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7. https://doi.org/10.1038/nnano.2012.192

  119. Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24. https://doi.org/10.1002/adma.201200523

  120. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64. https://doi.org/10.1016/S0169-409X(01)00203-4

  121. Yang B, Huang WM, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer (Guildf) 47. https://doi.org/10.1016/j.polymer.2005.12.051

  122. Zhao Q, Behl M, Lendlein A (2013) Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter 9. https://doi.org/10.1039/c2sm27077c

  123. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 56. https://doi.org/10.1016/j.pmatsci.2011.03.001

  124. White TJ (2012) Light to work transduction and shape memory in glassy, photoresponsive macromolecular systems: Trends and opportunities. J Polym Sci Part B Polym Phys 50. https://doi.org/10.1002/polb.23079

  125. Herath M, Epaarachchi J, Islam M et al (2020) Light activated shape memory polymers and composites: A review. Eur Polym J 136. https://doi.org/10.1016/j.eurpolymj.2020.109912

  126. Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42. https://doi.org/10.1039/c3cs35489j

  127. Leist SK, Zhou J (2016) Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp 11

  128. Baker RM, Tseng LF, Iannolo MT et al (2016) Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse femoral segmental defect study. Biomaterials 76. https://doi.org/10.1016/j.biomaterials.2015.10.064

  129. Tseng LF, Mather PT, Henderson JH (2013) Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater 9. https://doi.org/10.1016/j.actbio.2013.06.043

  130. Davis KA, Luo X, Mather PT, Henderson JH (2011) Shape memory polymers for active cell culture. J Vis Exp. https://doi.org/10.3791/2903

  131. Baker RM, Henderson JH, Mather PT (2013) Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J Mater Chem B 1. https://doi.org/10.1039/c3tb20810a

  132. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science (80-):296. https://doi.org/10.1126/science.1066102

  133. Hager MD, Greil P, Leyens C et al (2010) Self-healing materials. Adv Mater 22. https://doi.org/10.1002/adma.201003036

  134. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49–50. https://doi.org/10.1016/j.progpolymsci.2015.04.002

  135. Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23. https://doi.org/10.1088/0964-1726/23/9/094007

  136. Lendlein A, Yang G, Bellingham J et al (2018) Fabrication of reprogrammable shape-memory polymer actuators for robotics references and notes. Sci Robot Adv Mater Proc Natl Acad Sci USA 3. https://doi.org/10.1126/scirobotics.aat9090

  137. Mao Y, Yu K, Isakov MS et al (2015) Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 5. https://doi.org/10.1038/srep13616

  138. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1 http://hdl.handle.net/102.100.100/109190?index=1

  139. White TJ, Tabiryan NV, Serak SV et al (2008) A high frequency photodriven polymer oscillator. Soft Matter 4. https://doi.org/10.1039/b805434g

  140. White TJ, Serak SV, Tabiryan NV et al (2009) Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J Mater Chem 19. https://doi.org/10.1039/b818457g

  141. Tabiryan N, Serak S, Dai X-M, Bunning T (2005) Polymer film with optically controlled form and actuation. Opt Express 13. https://doi.org/10.1364/opex.13.007442

  142. Mahimwalla Z, Yager KG, Mamiya JI et al (2012) Azobenzene photomechanics: prospects and potential applications. Polym Bull 69. https://doi.org/10.1007/s00289-012-0792-0

  143. White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14. https://doi.org/10.1038/nmat4433

  144. Saphiannikova M, Toshchevikov V, Ilnytskyi J (2010) Photoinduced deformations in azobenzene polymer films. Nonlinear Opt Quantum Opt 41. https://doi.org/10.1063/1.371393

  145. Van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8. https://doi.org/10.1038/nmat2487

  146. Yamada M, Kondo M, Mamiya J et al (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chemie 120. https://doi.org/10.1002/ange.200800760

  147. Tobushi H, Hara H, Yamada E, Hayashi S (1996) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. In: Smart structures and materials 1996: Smart Materials Technologies and Biomimetics. https://doi.org/10.1117/12.232168

  148. Tobushi H, Hara H, Yamada E, Hayashi S (1996) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5. https://doi.org/10.1088/0964-1726/5/4/012

  149. Bodaghi M, Damanpack AR, Liao WH (2017) Adaptive metamaterials by functionally graded 4D printing. Mater Des 135. https://doi.org/10.1016/j.matdes.2017.08.069

  150. Wang J, Dai N, Jiang C et al (2021) Programmable shape-shifting 3D structures via frontal photopolymerization. Mater Des 198. https://doi.org/10.1016/j.matdes.2020.109381

  151. Kuang X, Roach DJ, Hamel CM et al (2020) Materials, design, and fabrication of shape programmable polymers. Multifunct Mater 3. https://doi.org/10.1088/2399-7532/abbdc1

  152. Wu S, Hu W, Ze Q et al (2020) Multifunctional magnetic soft composites: A review. Multifunct Mater 3. https://doi.org/10.1088/2399-7532/abcb0c

  153. Li X, Shang J, Wang Z (2017) Intelligent materials: a review of applications in 4D printing. Assem Autom 37. https://doi.org/10.1108/AA-11-2015-093

  154. Tabata M, Imai E, Yano H et al (2014) Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station. Trans Japan Soc Aeronaut Sp Sci Aerosp Technol Japan 12. https://doi.org/10.2322/tastj.12.pk_29

  155. Ganobjak M, Brunner S, Wernery J (2020) Aerogel materials for heritage buildings: materials, properties and case studies. J Cult Herit 42. https://doi.org/10.1016/j.culher.2019.09.007

  156. Jones JR, Brauer DS, Hupa L, Greenspan DC (2016) Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glas Sci 7. https://doi.org/10.1111/ijag.12252

  157. Ravitheja A, Reddy TCS, Sashidhar C (2019) Self-healing concrete with crystalline admixture—a review. J Wuhan Univ Technol Mater Sci Ed 34. https://doi.org/10.1007/s11595-019-2171-2

  158. Garces JIT, Dollente IJ, Beltran AB et al (2021) Life cycle assessment of self-healing geopolymer concrete. Clean Eng Technol 4. https://doi.org/10.1016/j.clet.2021.100147

  159. Jonas KC (1950) Stainless steel cloth as an internal prosthesis. Arch Surg 60. https://doi.org/10.1001/archsurg.1950.01250011230017

  160. Wu H, Tan H, Chen L et al (2021) Stainless steel cloth modified by carbon nanoparticles of Chinese ink as scalable and high-performance anode in microbial fuel cell. Chin Chem Lett 32. https://doi.org/10.1016/j.cclet.2020.12.048

  161. Li X, Shan W, Yang Y et al (2021) Limpet tooth-inspired painless microneedles fabricated by magnetic field-assisted 3D printing. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202003725

  162. Barber AH, Lu D, Pugno NM (2015) Extreme strength observed in limpet teeth. J R Soc Interface 12. https://doi.org/10.1098/rsif.2014.1326

  163. Nguyen PQ, Courchesne NMD, Duraj-Thatte A et al (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30. https://doi.org/10.1002/adma.201704847

  164. Basheer AA (2020) Advances in the smart materials applications in the aerospace industries. Aircr Eng Aerosp Technol 92. https://doi.org/10.1108/aeat-02-2020-0040

  165. Noor AK, Venneri SL, Paul DB, Hopkins MA (2000) Structures technology for future aerospace systems. Comput Struct 74. https://doi.org/10.1016/S0045-7949(99)00067-X

  166. Crawley EF (1994) Intelligent structures for aerospace: a technology overview and assessment. AIAA J 32. https://doi.org/10.2514/3.12161

  167. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221. https://doi.org/10.1243/09544100JAERO211

  168. Abramovich H (2021) 7 Applications of Intelligent Materials in Structures. Intell Mater Struct. https://doi.org/10.1515/9783110726701

  169. De Gao P (2002) Intelligent materials and structures. J Funct Mater Devices 8. https://doi.org/10.1515/9783110726701

  170. Xu B (2022) A perspective on intelligent design of engineered materials and structures by interface mechanics. Mech Res Commun 119. https://doi.org/10.1016/j.mechrescom.2021.103668

  171. (1990) Journal of intelligent material systems and structures. Mater Des 11. https://doi.org/10.1016/0261-3069(90)90079-y

  172. Dammaschke T, Rodenberg TN, Schäfer E, Ott KHR (2006) Efficiency of the polymer bur SmartPrep compared with conventional tungsten carbide bud bur in dentin caries excavation. Oper Dent 31. https://doi.org/10.2341/05-24

  173. Nomoto R, Komoriyama M, McCabe JF, Hirano S (2004) Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater 20. https://doi.org/10.1016/j.dental.2004.03.0011

  174. Perakis N, Belser UC, Magne P (2004) Final impressions: a review of material properties and description of a current technique. Int J Periodontics Restorative Dent 24. PMID:15119881

  175. Wassell RW, Barker D, Walls AWG (2002) Crowns and other extra-coronal restorations: impression materials and technique. Br Dent J 192. https://doi.org/10.1038/sj.bdj.4801456a

  176. Zhou Y, Parker CB, Joshi P et al (2021) 4D printing of stretchable supercapacitors via hybrid composite materials. Adv Mater Technol 6. https://doi.org/10.1002/admt.202001055

  177. Cheng CY, **e H, Xu ZY et al (2020) 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem Eng J 396. https://doi.org/10.1016/j.cej.2020.125242

  178. Choong YYC, Maleksaeedi S, Eng H et al (2020) High speed 4D printing of shape memory polymers with nanosilica. Appl Mater Today 18. https://doi.org/10.1016/j.apmt.2019.100515

  179. Javaid M, Haleem A (2020) Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma 11. https://doi.org/10.1016/j.jcot.2020.04.021

  180. Yamamura S, Iwase E (2021) Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Mater Des 203. https://doi.org/10.1016/j.matdes.2021.109605

  181. Shen B, Erol O, Fang L, Kang SH (2019) Programming the time into 3D printing: Current advances and future directions in 4D printing. Multifunct Mater 3. https://doi.org/10.1088/2399-7532/ab54ea

  182. Hoa SV, Cai X (2020) Twisted composite structures made by 4D printing method. Compos Struct 238. https://doi.org/10.1016/j.compstruct.2020.111883

  183. Van Hoa S, Cai X (2019) Twisted composite structures made by 4D printing method. In: Proceedings of the American Society for Composites - 34th Technical Conference, ASC 2019

    Google Scholar 

  184. Le Fer G, Becker ML (2020) 4D printing of resorbable complex shape-memory poly(propylene fumarate) star scaffolds. ACS Appl Mater Interfaces 12. https://doi.org/10.1021/acsami.0c01444

  185. Agarwala S, Goh GL, Goh GD et al (2019) 3D and 4D printing of polymer/CNTs-based conductive composites. In: 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. https://doi.org/10.1016/B978-0-12-816805-9.00010-7

    Chapter  Google Scholar 

  186. Yuan C, Wang F, Ge Q (2021) Multimaterial direct 4D printing of high stiffness structures with large bending curvature. Extrem Mech Lett 42. https://doi.org/10.1016/j.eml.2020.101122

  187. Akbari S, Sakhaei AH, Kowsari K et al (2018) Enhanced multimaterial 4D printing with active hinges. Smart Mater Struct 27. https://doi.org/10.1088/1361-665X/aabe63

Download references

Funding

This research is supported by National Natural Science Foundation of China (No. 51675226), Key Scientific and Technological Research Project of Jilin Province (No. 20180201055GX), Project of the International Science and Technology Cooperation of Jilin Province (No. 20170414043GH), and Industrial Innovation Project of Jilin Province (No. 20150204037SF).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed solely to the manuscript. We sincerely thank Prof. Wenzheng Wu for his kind guidance.

Corresponding author

Correspondence to Wenzheng Wu.

Ethics declarations

Ethics approval and consent to participate

N/A

Consent for publication

N/A.

Conflict of interest

The authors declared that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, M.I., Wu, W., Guiwei, L. et al. Research on imminent enlargements of smart materials and structures towards novel 4D printing (4DP: SMs-SSs). Int J Adv Manuf Technol 126, 2803–2823 (2023). https://doi.org/10.1007/s00170-023-11180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11180-z

Keywords

Navigation