Log in

A novel wheel-type vibration-magnetorheological compound finishing method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnetorheological finishing (MRF) is an important technique to achieve the surface precision of difficult-to-cut materials. In this paper, a wheel-type vibration-magnetorheological compound finishing is proposed in terms of reducing the unidirectional scratch caused by the wheel-type magnetorheological finishing tool and further improving the convergence rate of surface roughness. The vibration-magnetorheological coupling was realized through utilizing designed magnetorheological finishing (MRF) wheel and a nonresonant vibrational device (NRVD). Through the theoretical and experimental analysis, the surface roughness has been verified improved through increasing the normal and tangential forces, which are associated with introducing 2D vibration. The flow and viscoelastic models of the MRP fluid were established based on hydrodynamic lubrication and viscoelasticity theories. Finally, the feasibility of the proposed finishing method was verified by the results of improving surface roughness through designing reasonable processing experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated and analyzed during the study are included in this article.

Code availability

Not applicable.

Abbreviations

\(R\) :

Radius of the MRF wheel

\({h}_{1}\) :

Thickness of the belt

\({h}_{0}\) :

Minimum working gap

\(D\) :

Immersion depth of the belt

\(L\) :

Length of finishing zone

\(W\) :

Effective width generated by a belt

\(S\) :

Finishing zone boundary

\(B\) :

Magnetic flux density in the finishing zone

\(h\) :

Working gap

\({\phi }_{w}\) :

Volume percentage of water

\({\phi }_{c}\) :

Volume percentage of CI particles

\({\phi }_{\mathrm{a}}\) :

Volume percentage of abrasive

\({\phi }_{n}\) :

Volume percentage of nano-silica

\({\phi }_{g}\) :

Volume percentage of glycerol

\({\phi }_{s}\) :

Volume percentage of hexametaponate

\(\tau\) :

Shear stress of the MRP fluid

\({\tau }_{0}\) :

Shear yield stress of the MRP fluid

\({\eta }_{1}\) :

Off-state viscosity of the MRP fluid

\(\dot{\gamma }\) :

Shear rate

\(H\) :

Magnetic field intensity

\({\mu }_{0}\) :

Space permeability

\({M}_{s}\) :

Saturation magnetic field of the magnetic particles

\({\eta }_{0}\) :

Viscosity of the base fluid

\(E\) :

Ideal spring stiffness

\({\eta }_{2}\) :

Ideal Newtonian fluid viscosity

\({G}^{*}\) :

Complex shear modulus

\({G}_{1}\) :

Real part of the complex shear modulus

\({G}_{2}\) :

Imaginary part of the complex shear modulus

\({F}_{N}\) :

Normal force

\({P}_{N}\) :

Normal stress

\({P}_{d}\) :

Hydrodynamic pressure

\({P}_{m}\) :

Magnetization pressure

\({\mu }_{f}\) :

Magneto conductivity of the water

\({\mu }_{p}\) :

Magneto conductivity of magnetic particle

\({h}_{\mathrm{m}0}\) :

Corrected minimum gap

\({h}_{a}\) :

Corrected working gap

\({A}_{1}\) :

Amplitude of the sample moves harmonically along the X-axis

\({f}_{1}\) :

Frequency of the sample moves harmonically along the X-axis

\({U}_{1}\) :

Linear velocity of the sample surface along the X-axis

\(\omega\) :

Rotates angular velocity of the finishing wheel

\({U}_{2}\) :

Linear velocity near the finishing wheel

\({\overline{P} }_{d}\) :

Dimensionless pressure

\({\tau }_{x}\) :

X-axis shear stress

\({dp}_{d}/dx\) :

Pressure gradient

\({\tau }_{1}\left(x,z\right)\) :

Steady shear stress distribution

\({\tau }_{1}\) :

Steady shear stress

\({\gamma }_{x}\) :

X-axis oscillatory shear strain

\({\tau }_{2}\) :

X-axis oscillatory shear stress

\({F}_{\mathrm{x}}\) :

X-axis tangential force

\({A}_{2}\) :

Amplitude of the sample moves harmonically along the Y-axis

\({f}_{2}\) :

Frequency of the sample moves harmonically along the Y-axis

\({\gamma }_{Y}\) :

Y-axis oscillatory shear strain

\({\tau }_{Y}\) :

Y-axis shear stress

\({F}_{Y}\) :

Y-axis tangential force

\(\overline{{F }_{N}}\) :

Theoretical value of the normal force in one period

\(\overline{{F }_{X}}\) :

Theoretical value of the X-axis tangential force in one period

\(\overline{{F }_{Y}}\) :

Theoretical value of the Y-axis tangential force in one period

\(T\) :

Period of vibration

References

  1. Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li SX (2020) Advanced ceramic components: Materials, fabrication, and applications. J Ind Eng Chem 85:34–65. https://doi.org/10.1016/j.jiec.2020.02.002

    Article  Google Scholar 

  2. Goswami C, Patnaik A, Bhat IK, Singh T (2021) Mechanical physical and wear properties of some oxide ceramics for hip joint application: A short review. Mater Today: Proc 44(6):4913–4918. https://doi.org/10.1016/j.matpr.2020.11.888

    Article  Google Scholar 

  3. Belosludtsev A, Buinovskis D (2021) Significant increase of UV reflectivity of SiC galvanometer mirror scanners for the high-power laser applications. Opt Laser Technol 140:107027. https://doi.org/10.1016/j.optlastec.2021.107027

    Article  Google Scholar 

  4. Qiu Y, Zhu GZ, Min ZX, Liu Y (2021) Influence of ceramic substrate quality on CBGA assembly reliability. Eng Fail Anal 123:105316. https://doi.org/10.1016/j.engfailanal.2021.105316

    Article  Google Scholar 

  5. Liang XH, Lin B, Liu XL (2020) Analysis of local features of engineering ceramics grinding surface. Measurement 151:107205. https://doi.org/10.1016/j.measurement.2019.107205

    Article  Google Scholar 

  6. Alam Z, Jha S (2017) Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process. Wear 374–375:54–62. https://doi.org/10.1016/j.wear.2016.11.039

    Article  Google Scholar 

  7. Barman A, Das M (2017) Design and fabrication of a novel polishing tool for finishing freeform surfaces in magnetic field assisted finishing (MFAF) process. Precis Eng 49:61–68. https://doi.org/10.1016/j.precisioneng.2017.01.010

    Article  Google Scholar 

  8. Wang LY, Sun YL, Chen FY, Zhang GG, Zhang P, Zuo DW (2022) Experimental study on vibration-assisted magnetic abrasive finishing for internal blind cavity by bias external rotating magnetic pole. Precis Eng 74:69–79. https://doi.org/10.1016/j.precisioneng.2021.11.007

    Article  Google Scholar 

  9. Bae JT, Kim HJ (2021) Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center. J Mech Sci Technol 35(7):2851–2859. https://doi.org/10.1007/s12206-021-0608-y

    Article  Google Scholar 

  10. Xu JY, Zou YH (2021) Development of a new magnetic abrasive finishing process with renewable abrasive particles using the circulatory system. Precis Eng 72:417–425. https://doi.org/10.1016/j.precisioneng.2021.06.004

    Article  Google Scholar 

  11. Feng M, Wu YB, Wang YL, Zeng J, Bitoh T, Nomura M, Fujii T (2020) Investigation on the polishing of aspheric surfaces with a doughnut-shaped magnetic compound fluid (MCF) tool using an industrial robot. Precis En 61:182–193. https://doi.org/10.1016/j.precisioneng.2019.09.018

    Article  Google Scholar 

  12. Kumar M, Alok A, Kumar V, Das M (2021) Advanced abrasive-based nano-finishing processes: challenges, principles and recent applications. Mater Manuf Process 37(4):372–392. https://doi.org/10.1080/10426914.2021.2001509

    Article  Google Scholar 

  13. Wang YY, Zhang Y, Feng ZJ (2016) Analyzing and improving surface micro-grooves by dual-rotation magnetorheological finishing. Appl Surf Sci 360:224–233. https://doi.org/10.1016/j.apsusc.2015.11.009

    Article  Google Scholar 

  14. Paswan SK, Singh AK (2021) Theoretical analysis of a novel in-situ magnetorheological honing process for finishing the internal surface of tubular workpieces. Wear 476:203698. https://doi.org/10.1016/j.wear.2021.203698

    Article  Google Scholar 

  15. Jung BS, Jang K-I, Min B-K, Lee SJ, Seok JW (2009) Magnetorheological finishing process for hard materials using sintered iron-CNT compound abrasives. Int J Mach Tool Manu 49(5):407–418. https://doi.org/10.1016/j.ijmachtools.2008.12.002

    Article  Google Scholar 

  16. Lv BR, Lin B, Cao ZC, Li B, Wang GL (2022) A parallel 3-DOF micro-nano motion stage for vibration-assisted milling. Mech Mach Theory 173:104854. https://doi.org/10.1016/j.mechmachtheory.2022.104854

    Article  Google Scholar 

  17. Guo J, Jong HJH, Kang RK, Guo DM (2018) Novel localized vibration-assisted magnetic abrasive polishing method using loose abrasives for V-groove and Fresnel optics finishing. Opt Express 26(9):11608–11619. https://doi.org/10.1364/OE.26.011608

    Article  Google Scholar 

  18. Misra A, Pandey PM, Dixit US (2017) Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process. Int J Mech Sci 131–132:853–867. https://doi.org/10.1016/j.ijmecsci.2017.07.023

    Article  Google Scholar 

  19. Jiang C, Huang JL, Jiang ZY, Qian DB, Hong XL (2019) Estimation of energy savings when adopting ultrasonic vibration-assisted magnetic compound fluid polishing. Int J Pr Eng Man-GT 8(1):1–11. https://doi.org/10.1007/s40684-019-00167-5

    Article  Google Scholar 

  20. Zhang FH, Yu XB, Zhang Y, Lin YY, Luan DR (2009) Experimental study on polishing characteristics of ultrasonic-magnetorheological compound finishing. Adv Mat Res 76–78:235–239. https://doi.org/10.4028/www.scientific.net/AMR.76-78.235

    Article  Google Scholar 

  21. Chen YR, Su HH, Qian N, He JY, Gu JQ, Xu JH, Ding K (2021) Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: Grinding force and surface quality. Ceram Int 47(11):15433–15441. https://doi.org/10.1016/j.ceramint.2021.02.109

    Article  Google Scholar 

  22. Zhu ZH, Huang P, To S, Zhu LM, Zhu ZW (2023) Fast-tool-servo-controlled shear-thickening micropolishing. Int J Mach Tool Manu 184:103968. https://doi.org/10.1016/j.ijmachtools.2022.103968

    Article  Google Scholar 

  23. Prabhu P, Rao M (2021) Investigations on piezo actuated micro XY stage for vibration-assisted micro milling. J Micromech Microeng 31(6):065007. https://doi.org/10.1088/1361-6439/abfa7c

    Article  Google Scholar 

  24. Chen XY, Gu Y, Lin JQ, Yi A, Kang MS, Cang XY (2020) Study on subsurface damage and surface quality of silicon carbide ceramic induced by a novel non-resonant vibration-assisted roll-type polishing. J Mater Process Tech 282:116667. https://doi.org/10.1016/j.jmatprotec.2020.116667

    Article  Google Scholar 

  25. Li YC, Zhou XQ, Liu Q (2021) Two-dimensional vibration actuated polishing of small surfaces by generating random-like Lissajous trajectories. Appl Optics 60(4):851–863. https://doi.org/10.1364/AO.413073

    Article  Google Scholar 

  26. Gu Y, Kang MS, Lin JQ, Liu A, Fu B, Wan PH (2021) Non-resonant vibration-assisted magnetorheological finishing. Precis Eng 71:263–281. https://doi.org/10.1016/j.precisioneng.2021.03.016

    Article  Google Scholar 

  27. Kang MS, Gu Y, Lin JQ, Zhou XQ, Zhang S, Zhao HB, Li Z, Yu BJ, Fu B (2023) Material removal mechanism of non-resonant vibration-assisted magnetorheological finishing of Material Silicon carbide ceramics. Int J Mech Sci 242:107986. https://doi.org/10.1016/j.ijmecsci.2022.107986

    Article  Google Scholar 

  28. Ghosh G, Sidpara A, Bandyopadhyay PP (2021) Theoretical analysis of magnetorheological finishing of HVOF sprayed WC-Co coating. Int J Mech Sci 207:106629. https://doi.org/10.1016/j.ijmecsci.2021.106629

    Article  Google Scholar 

  29. Ghosh G, Sidpara A, Bandyopadhyay PP (2021) Experimental and theoretical investigation into surface roughness and residual stress in magnetorheological finishing of OFHC copper. J Mater Process Tech 288:116899. https://doi.org/10.1016/j.jmatprotec.2020.116899

    Article  Google Scholar 

  30. Kumar M, Kumar A, Bharti RK, Yadav HNS, Das M (2021) A review on rheological properties of magnetorheological fluid for engineering components polishing. Materials Today: Proceedings 56(3):6–12. https://doi.org/10.1016/j.matpr.2021.11.611

    Article  Google Scholar 

  31. Shorey AB, Kordonski W, Tricard M (2004) Magnetorheological finishing of large and lightweight optics. QED Technol Inc 5533:99–107. https://doi.org/10.1117/12.559814

    Article  Google Scholar 

  32. Chen MJ, Liu HN, Cheng J, Yu B, Fang Z (2017) Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head. Appl Opt 56(19):5573–5582. https://doi.org/10.1364/AO.56.005573

    Article  Google Scholar 

  33. Xu JH, Li JY, Liu YM (2021) Investigation on the normal force in cluster magnetorheological-porous foam finishing process. Tribol Int 157:106911. https://doi.org/10.1016/j.triboint.2021.106911

    Article  Google Scholar 

  34. Zhang ZY, Geng K, Qiao GC, Zhang JH (2021) The heat flow coupling effect of laser-assisted magnetorheological polishing. Int J Adv Manuf Tech 114(1):591–603. https://doi.org/10.1007/s00170-021-06880-3

    Article  Google Scholar 

  35. Wang HJ, Zhang FH, Zhang Y, Luan DR (2007) Research on material removal of ultrasonic-magnetorheological compound finishing. Int J Mach Mach Mater 2(1):50–58. https://doi.org/10.1504/IJMMM.2007.012666

    Article  Google Scholar 

  36. Zhai Q, Zhai WJ, Gao B (2021) Modeling of forces and material removal rate in ultrasound assisted magnetorheological polishing (UAMP) of sapphire. Colloid Surface A 628:127272. https://doi.org/10.1016/j.colsurfa.2021.127272

    Article  Google Scholar 

  37. Pan JS, Yan QS (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Tech 81:2017–2026. https://doi.org/10.1007/s00170-015-7332-7

    Article  Google Scholar 

  38. Guo YF, Yin SH, Ohmori H, Li M, Chen FJ, Huang S (2022) A novel high efficiency magnetorheological polishing process excited by Halbach array magnetic field. Precis Eng 74:175–185. https://doi.org/10.1016/j.precisioneng.2021.11.011

    Article  Google Scholar 

  39. Aggarwal A, Singh AK (2021) Development of grinding wheel type magnetorheological finishing process for blind hole surfaces. Mater Manuf Process 36(4):457–478. https://doi.org/10.1080/10426914.2020.1843666

    Article  Google Scholar 

  40. Arora K, Singh AK (2021) Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process. Wear 476:203693. https://doi.org/10.1016/j.wear.2021.203693

    Article  Google Scholar 

  41. Wang JJ, Yang Y, Guo P (2018) Effects of vibration trajectory on ductile-to-brittle transition in vibration cutting of single crystal silicon using a non-resonant tool. Procedia Cirp 71:289–292. https://doi.org/10.1016/j.procir.2018.05.017

    Article  Google Scholar 

  42. Fan W, ** HX, Fu YC, Lin YY (2021) A type of symmetrical differential lever displacement amplification mechanism. Mech Ind 22:5. https://doi.org/10.1051/meca/2021003

    Article  Google Scholar 

  43. Gu Y, Duan XX, Lin JQ, Yi A, Kang MS, Jiang JJ, Zhou WD (2020) Design, analysis, and testing of a novel 2-DOF vibration-assisted polishing device driven by the piezoelectric actuators. Int J Adv Manuf Tech 111:471–493. https://doi.org/10.1007/s00170-020-06043-w

    Article  Google Scholar 

  44. Li XY, Li QK, Ye ZY, Zhang YF, Ye MH, Wang C (2021) Surface Roughness Tuning at Sub-Nanometer Level by Considering the Normal Stress Field in Magnetorheological Finishing. Micromachines 12(8):997. https://doi.org/10.3390/mi12080997

    Article  Google Scholar 

  45. Liu JB, Li XY, Zhang YF, Tian D, Ye MH, Wang C (2020) Predicting the Material Removal Rate (MRR) in surface Magnetorheological Finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl Surf Sci 504:144492. https://doi.org/10.1016/j.apsusc.2019.144492

    Article  Google Scholar 

  46. Sidpara A, Das M, Jain VK (2009) Rheological Characterization of Magnetorheological Finishing Fluid. Mater Manuf Process 24(12):1467–1478. https://doi.org/10.1080/10426910903367410

    Article  Google Scholar 

  47. Varela-Jimnez MI, Luna JLV, Corts-Ramrez JA, Song G (2015) Constitutive model for shear yield stress of magnetorheological fluid based on the concept of state transition. Smart Mater Struct 24(4):045039. https://doi.org/10.1088/0964-1726/24/4/045039

    Article  Google Scholar 

  48. Garoosi F (2020) Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technol 366:788–820. https://doi.org/10.1016/j.powtec.2020.03.032

    Article  Google Scholar 

  49. Aboutalebi R, Eshaghi M, Hemmatian M, Sedaghati R (2021) Post-yield characteristics of magnetorheological fluids; from modelling to large-amplitude vibration analysis of sandwich plates using nonlinear finite element method. Aerosp Sci Technol 110:106508. https://doi.org/10.1016/j.ast.2021.106508

    Article  Google Scholar 

  50. Mohammadi N, Mahjoob MJ, Kaffashi B, Malakooti S (2010) An experimental evaluation of pre-yield and post-yield rheological models of magnetic field dependent smart materials. J Mech Sci Technol 24:1829–1837. https://doi.org/10.1007/s12206-010-0607-x

    Article  Google Scholar 

  51. Gong XL, Xu YG, Xuan SH, Guo CY, Zong LH (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56(6):1375–1391. https://doi.org/10.1122/1.4739263

    Article  Google Scholar 

  52. Li WH, Du HJ, Chen G, Yeo SH (2001) Viscoelastic properties of MR fluids under oscillatory shear. Smart Mater Struct 4331:333–342. https://doi.org/10.1117/12.432732

    Article  Google Scholar 

  53. Shan L, Jia WP, Zhou M, Meng YG, Zhang XJ, Tian Y (2017) Frequency-independent viscoelasticity of carbonyl iron particle suspensions under a magnetic field. Smart Mater Struct 26:054009. https://doi.org/10.1088/1361-665x/26/5/054009

    Article  Google Scholar 

  54. Kordonski WI, Jacobs SD (1996) Magnetorheological finishing. Int J Mod Phys B 10(2324):2837–2848. https://doi.org/10.1142/S0217979296001288

    Article  Google Scholar 

  55. Gandhi F, Bullough WA (2016) On the Phenomenological Modeling of Electrorheological and Magnetorheological Fluid Preyield Behavior. J Intel Mat Syst Str 16(3):237–248. https://doi.org/10.1177/1045389X05049649

    Article  Google Scholar 

  56. Kamath GM, Werely NM (1997) Nonlinear Viscoelastic-Plastic Mechanisms-Based Model of an Electrorheological Damper. J Guid Control Dynam 20:1125–1132. https://doi.org/10.2514/2.4167

    Article  Google Scholar 

  57. Liu SW, Wang HX, Zhang QH, Hou J, Zhong B, Chen XH (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik 206:164368. https://doi.org/10.1016/j.ijleo.2020.164368

    Article  Google Scholar 

  58. Feng YP, Su JS, Cheng HB (2016) Non-Newtonian hydrodynamic modeling of electrorheological finishing feature based on wheel-like finishing tool. J Intel Mat Syst Str 28(11):1407–1414. https://doi.org/10.1177/1045389x16672568

    Article  Google Scholar 

  59. Zhang FD, Zhang XJ, Yu JC (2000) Mathematics model of magnetorheological finishing. In Advanced optical manufacturing and testing Technology. Int Soc Opt Photon 4231:490–497. https://doi.org/10.1117/12.402796

    Article  Google Scholar 

  60. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740. https://doi.org/10.1007/s00397-010-0446-9

    Article  Google Scholar 

  61. Zhang YF, Feng JB, Zhao YY, Rao MQ, Yin YH (2022) Towards understanding and restraining the mechanical relaxation effect in polishing silicon carbide with a detachable bonnet tool. Int J Mech Sci:107962. https://doi.org/10.1016/j.ijmecsci.2022.107962

Download references

Funding

This work is supported by the Science and Technology Development Projects of Jilin Province (Grant: 20220201025GX).

Author information

Authors and Affiliations

Authors

Contributions

Yan Gu and Bin Fu conducted this study, analyzed the data, and drafted the manuscript. Yan Gu and Jieqiong Lin supervised this work. **uyuan Chen contributed to the literature review. Weidong Zhou, Bing** Yu, Huibo Zhao, Zhen Li, and Zisu Xu provided critical feedback and helped shape the research. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yan Gu or Jieqiong Lin.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Fu, B., Lin, J. et al. A novel wheel-type vibration-magnetorheological compound finishing method. Int J Adv Manuf Technol 125, 4213–4235 (2023). https://doi.org/10.1007/s00170-023-11034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11034-8

Keywords

Navigation