Log in

Machinability analysis of nickel-based superalloy Nimonic 90: a comparison between wet and LCO2 as a cryogenic coolant

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The usage of cryogenic fluid is increasing in the machining industries especially to cut the materials having a lower machinability like Nimonic 90, a nickel-based alloy. However, the comparison of flood coolant and LCO2 as a cryogenic fluid based on machining performance has not been found for machining Nimonic 90. In this regard, this study compares LCO2 and conventional mineral oil-based flood coolant on the basis of machining performance while turning Nimonic 90. The effect of turning process parameters (cutting speed (vc), feed (f), and depth of cut (ap)) and cutting fluids has been identified by analyzing machinability indicators like cutting force, flank tool wear, power consumption, surface roughness in terms of Ra, and chip morphology. Increment of 34%, 25%, and 24% in cutting forces has been observed for cryogenic turning using LCO2 in comparison with wet machining when the values of ap are 0.75, 0.50, and 0.25 mm, respectively. A decrement of 63% tool wear has been seen in LCO2 cryogenic fluid in contrast to wet machining at higher values of vc, f, and ap. The superior surface finish has been found in wet machining, while lesser power consumption was recorded for LCO2 as a cutting fluid. Cryogenic machining provided better chip breakability in comparison with wet machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

v c :

Cutting speed (m/min)

f :

Longitudinal feed (mm/rev)

a p :

Axial depth of cut (mm)

CRC :

Chip reduction coefficient

R a :

Arithmetic mean for the absolute values of roughness profile (μm)

LCO2 :

Liquid carbon dioxide

LN2 :

Liquid nitrogen

MQL:

Minimum quantity lubrication

CryoMQL:

Hybrid cutting conditions (cryogenic fluid and MQL)

References

  1. Gupta MK, Song Q, Liu Z, Sarikaya M, Jamil M, Mia M, Singla AK, Khan AM, Khanna N, Pimenov DY (2020) Environment and economic burden of sustainable cooling/lubrication methods in machining of Inconel-800. J Clean Prod 125074:125074. https://doi.org/10.1016/j.jclepro.2020.125074

    Article  Google Scholar 

  2. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134:233–253. https://doi.org/10.1016/S0924-0136(02)01042-7

    Article  Google Scholar 

  3. Mali HS, Unune DR (2017) Machinability of nickel-based superalloys: an overview. In: Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.09817-9

    Chapter  Google Scholar 

  4. Kumar V, Jangra K, Kumar V (2012) Effect of WEDM parameters on machinability of Nimonic-90. In: Proceedings of the national conference on trends and advances in mechanical engineering (TAME), YMCA University of Science and Technology

  5. Chetan, Ghosh S, Rao PV (2017) Performance evaluation of deep cryogenic processed carbide inserts during dry turning of Nimonic 90 aerospace grade alloy. Tribol Int 115:397–408. https://doi.org/10.1016/j.triboint.2017.06.013

    Article  Google Scholar 

  6. Sharma VS, Singh G, Sorby K (2015) A review on minimum quantity lubrication for machining processes. Mater Manuf Process 30:935–953. https://doi.org/10.1080/10426914.2014.994759

    Article  Google Scholar 

  7. Chetan GS, Rao PV (2016) Environment friendly machining of Ni-Cr-Co based super alloy using different sustainable techniques. Mater Manuf Process 31:852–859. https://doi.org/10.1080/10426914.2015.1037913

    Article  Google Scholar 

  8. Danish M, Ginta TL, Habib K, Rani AM, Saha BB (2019) Effect of cryogenic cooling on the heat transfer during turning of AZ31C magnesium alloy. Heat Transfer Eng 40:1023–1032. https://doi.org/10.1080/01457632.2018.1450345

    Article  Google Scholar 

  9. Danish M, Ginta TL, Habib K, Carou D, Rani AMA, Saha BB (2017) Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int J Adv Manuf Technol 91:2855–2868. https://doi.org/10.1007/s00170-016-9893-5

    Article  Google Scholar 

  10. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  11. Sarikaya M, Gupta MK, Tomaz I, Danish M, Mia M, Rubaiee S, Jamil M, Pimenov DY, Khanna N (2021) Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. Int J Manuf Process 62:179–201. https://doi.org/10.1016/j.jmapro.2020.12.013

    Article  Google Scholar 

  12. Hong SY, Broomer M (2000) Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel. Clean Prod Process 2:0157–0166. https://doi.org/10.1007/s100980000073

    Article  Google Scholar 

  13. Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production – part II: evaluation of sustainable machining technologies. J Clean Prod 18:1211–1221. https://doi.org/10.1016/j.jclepro.2010.01.015

    Article  Google Scholar 

  14. Haider J, Kingdom U (2014) Health and environmental impacts in metal machining processes, vol 8. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-096532-1.00804-9

  15. Tebaldo V, di Confiengo GG, Faga MG (2017) Sustainability in machining: “eco-friendly” turning of Inconel 718. Surface characterisation and economic analysis. J Clean Prod 140:1567–1577. https://doi.org/10.1016/j.jclepro.2016.09.216

    Article  Google Scholar 

  16. Yildirim ÇV, Kivak T, Sarikaya M, Şirin Ş (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Mater Res Technol 9:2079–2092. https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  17. Shah P, Khanna N, Chetan (2020) Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribol Int 148:106314. https://doi.org/10.1016/j.triboint.2020.106314

    Article  Google Scholar 

  18. Kaynak Y, Lu T, Jawahir IS (2014) Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach Sci Technol 18:149–198. https://doi.org/10.1080/10910344.2014.897836

    Article  Google Scholar 

  19. Busch K, Hochmuth C, Pause B, Stoll A, Wetheim R (2016) Investigation of cooling and lubrication strategies for machining high-temperature alloys. Procedia CIRP 41:835–840. https://doi.org/10.1016/j.procir.2015.10.005

    Article  Google Scholar 

  20. Sharma VS, Dogra M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49:435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010

    Article  Google Scholar 

  21. Ross KNS, Manimaran G (2020) Machining investigation of Nimonic-80A superalloy under cryogenic CO2 as coolant using PVD-TiAlN/TiN coated tool at 45° nozzle angle. Arab J Sci Eng 11:1–15. https://doi.org/10.1007/s13369-020-04728-8

    Article  Google Scholar 

  22. Jadhav PS, Mohanty CP, Hotta TK, Gupta M (2020) An optimal approach for improving the machinability of Nimonic C-263 superalloy during cryogenic assisted turning. J Manuf Process 58:693–705. https://doi.org/10.1016/j.jmapro.2020.08.017

    Article  Google Scholar 

  23. Nimel Sworna Ross K, Manimaran G, Anwar S, Rahman MA, Korkmuz ME, Gupta MK, Alfaify A, Mia M (2020) Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication. Tribol Int:106762 In press. https://doi.org/10.1016/j.triboint.2020.106762

  24. Günay M, Korkmaz ME, Yaşar N (2020) Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments. J Manuf Process 56:678–687. https://doi.org/10.1016/j.jmapro.2020.05.031

    Article  Google Scholar 

  25. Korkmaz ME, Yaşar N, Günay M (2020) Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Eng Sci Technol Int J 23:664–673. https://doi.org/10.1016/j.jestch.2020.02.001

    Article  Google Scholar 

  26. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy - Inconel 718. J Mater Process Technol 211:773–783. https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  27. Patil NG, Asem A, Pawade RS, Thakur DG, Brahmankar PK (2014) Comparative study of high speed machining of Inconel 718 in dry condition and by using compressed cold carbon dioxide gas as coolant. Procedia CIRP 24:86–91. https://doi.org/10.1016/j.procir.2014.08.009

    Article  Google Scholar 

  28. Rinaldi S, Caruso S, Umbrello D, Filice L, Franchi R, Prete Del A (2018) Machinability of Waspaloy under different cutting and lubri-cooling conditions. Int J Adv Manuf Technol 94:3703–3712. https://doi.org/10.1007/s00170-017-1133-0

    Article  Google Scholar 

  29. Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306:51–63. https://doi.org/10.1016/j.wear.2013.05.011

    Article  Google Scholar 

  30. Chaabani S, Arrazola PJ, Ayed Y, Madariaga A, Tidu A, Germain G (2020) Comparison between cryogenic coolants effect on tool wear and surface integrity in finishing turning of Inconel 718. J Mater Process Technol 285:116780. https://doi.org/10.1016/j.jmatprotec.2020.116780

    Article  Google Scholar 

  31. Abdul Halim NH, Che Haron CH, Abdul Ghani J (2020) Sustainable machining of hardened Inconel 718: a comparative study. Int J Precis Eng Manuf 21:1375–1387. https://doi.org/10.1007/s12541-020-00332-w

    Article  Google Scholar 

  32. Vignesh S, Mohammed Iqbal U (2019) Experimental investigation on machining parameters of Hastelloy C276 under different cryogenic environment. In: Shunmugam M., Kanthababu M. (eds) Advances in Forming, Machining and Automation. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore, pp 253–267. https://doi.org/10.1007/978-981-32-9417-2_20

    Chapter  Google Scholar 

  33. Kesavan J, Senthilkumar V (2020) Experimental investigations on cryo-machining of Hastelloy C-276 with tool wear characteristics. Sadhana - Acad Proc Eng Sci 45:240. https://doi.org/10.1007/s12046-020-01477-0

    Article  Google Scholar 

  34. Pereira O, Rodríguez A, Ayesta I, Barreiro G, Isabel Fernández-Abia A, Norberto Lopez De Lacalle L (2016) A cryo lubri-coolant approach for finish milling of aeronautical hard-to-cut materials. Int J Mechatron Manuf Syst 9(4):370–384. https://doi.org/10.1504/IJMMS.2016.082872

    Article  Google Scholar 

  35. Khanna N, Suri NM, Agrawal C, Shah P, Krolczyk GM (2019) Effect of hybrid machining techniques on machining performance of in-house developed Mg-PMMC. Trans Indian Inst Metals 72:1799–1807. https://doi.org/10.1007/s12666-019-01652-w

    Article  Google Scholar 

  36. Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman ST, Pusavec F, Putz M, Rech J, Schulze V, Umbrello D (2016) Cryogenic manufacturing processes. CIRP Ann Manuf Technol 65:713–736. https://doi.org/10.1016/j.cirp.2016.06.007

    Article  Google Scholar 

  37. Kaynak Y (2014) Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. Int J Adv Manuf Technol 72:919–933. https://doi.org/10.1007/s00170-014-5683-0

    Article  Google Scholar 

  38. Bilga PS, Singh S, Kumar R (2016) Optimization of energy consumption response parameters for turning operation using Taguchi method. J Clean Prod 137:1406–1417. https://doi.org/10.1016/j.jclepro.2016.07.220

    Article  Google Scholar 

  39. Shokrani A, Dhokia V, Newman ST (2016) Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J Manuf Process 21:172–179. https://doi.org/10.1016/j.jmapro.2015.12.002

    Article  Google Scholar 

  40. Khanna N, Shah P, Suri NM, Agrawal C, Khatkar SK, Pusavec F, Sarikaya M (2020) Application of environmentally-friendly cooling/lubrication strategies for turning magnesium/SiC MMCs. Silicon. https://doi.org/10.1007/s12633-020-00588-x

  41. Frantsen JE, Mathiesen T (2009) Specifying stainless steel surface for the brewery, dairy and pharmaceutical sectors. In: Proceedings of the corrosion March 2009, Atlanta, GA, USA, 22–26.

  42. Kumar R, Sahoo AK, Mishra PC, Das RK (2018) Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation. Adv Manuf 6:52–70. https://doi.org/10.1007/s40436-018-0215-z

    Article  Google Scholar 

  43. Anurag A, Kumar R, Joshi KK, Das RK (2018) Analysis of chip reduction coefficient in turning of Ti-6Al-4V ELI. IOP Conf Ser Mater Sci Eng 390:012113. https://doi.org/10.1088/1757-899X/390/1/012113

    Article  Google Scholar 

  44. Kamruzzaman M, Dhar NR (2010) Effect of high-pressure coolant on temperature, chip, force, tool wear, tool life and surface roughness in turning AISI 1060 steel. Gazi Univ J Sci 22(4):359–370.  https://dergipark.org.tr/en/pub/gujs/issue/7391/96834. Accessed 1 Sept 2020

  45. Musfirah AH, Ghani JA, Che Haron CH, Kasim MS (2015) Effect of cutting parameters on cutting zone in cryogenic high speed milling of Inconel 718 alloy. J Teknol 77:1–7. https://doi.org/10.11113/jt.v77.6877

    Article  Google Scholar 

  46. Yang X, Zhang B (2019) Material embrittlement in high strain-rate loading. Int J Extreme Manuf 1:022003. https://doi.org/10.1088/2631-7990/ab263f

    Article  Google Scholar 

  47. Persson B (2000) Sliding friction: physical principles and applications, 2nd edn. Springer-Varlag, Berlin

    Book  Google Scholar 

  48. Kalpakjian S, Schmid SR, Vijay Sekar KS (2014) Manufacturing engineering and technology, 7th edn. Pearson Education, Singapore

  49. Kaynak Y, Gharibi A (2018) Progressive tool wear in cryogenic machining: the effect of liquid nitrogen and carbon dioxide. J Manuf Mater Process 2:31. https://doi.org/10.3390/jmmp2020031

    Article  Google Scholar 

  50. Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511. https://doi.org/10.1016/j.ijmachtools.2011.02.009

    Article  Google Scholar 

  51. Rahim EA, Dorairaju H (2018) Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining. Measurement 123:213–225. https://doi.org/10.1016/j.measurement.2018.03.015

    Article  Google Scholar 

  52. Sen B, Mia M, Gupta MK, Rahman MA, Mandal UK, Mondal SP (2019) Influence of Al2O3 and palm oil–mixed nano-fluid on machining performances of Inconel-690: IF-THEN rules–based FIS model in eco-benign milling. Int J Adv Manuf Technol 103:3389–3403. https://doi.org/10.1007/s00170-019-03814-y

    Article  Google Scholar 

  53. Astakhov VP (2006) Tribology of metal cutting, 1st edn. Elsevier Science, Oxford 

  54. Khan AM, He N, Jamil M, Raza SM (2021) Energy characterization and energy-saving strategies in sustainable machining processes: a state-of-the-art review. J Prod Syst Manuf Sci 2(1):26–491. http://www.imperialopen.com/index.php/JPSMS/article/view/47. Accessed 13 Jan 2021

  55. Nimel Sworna Ross K, Ganesh, Kantharaj, Kumar S (2020) Multi-response optimization of Ti-6Al-4V milling using AlCrN/TiAlN coated tool under cryogenic cooling. J Prod Syst Manuf Sci 1(1):29–41. http://imperialopen.com/index.php/JPSMS/article/view/6. Accessed 13 Jan 2021

  56. Dhar NR, Islam MW, Islam S, Mithu MAH (2006) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171:93–99. https://doi.org/10.1016/j.jmatprotec.2005.06.047

    Article  Google Scholar 

  57. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54. https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  58. Davim JP (2008) Machining: fundamentals and recent advances. Springer-verlag, London, p 23

    Google Scholar 

  59. Davim JP (2007) Application of Merchant theory in machining particulate metal matrix composites. Mater Des 28:2684–2687. https://doi.org/10.1016/j.matdes.2006.10.015

    Article  Google Scholar 

  60. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Machinability investigation of Inconel 718 in high-speed turning. Int J Adv Manuf Technol 45:421–429. https://doi.org/10.1007/s00170-009-1987-x

    Article  Google Scholar 

  61. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209:4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the SERB-DST, Government of India, for the financial support given under the Project (ECR/2016/000735), titled “Design and Development of Energy Efficient Cryogenic Machining Facility for Heat Resistant Alloys and Carbon Fibre Composites.”

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T. Patel, N. Khanna, S. Yadav, P. Shah, and M. Sarikaya. Methodology: T. Patel, S. Yadav, and P. Shah. Investigations: T. Patel, N. Khanna, S. Yadav, and P. Shah. Writing original draft: T. Patel, N. Khanna, P. Shah, D. Singh, M. Gupta, and N. Kotkunde. Writing, review, and editing: all the authors. Supervision: N. Khanna. Funding: N. Khanna.

Corresponding authors

Correspondence to Navneet Khanna or Munish Kumar Gupta.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The copyright permissions have been taken, and consent to submit has been received explicitly from all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T., Khanna, N., Yadav, S. et al. Machinability analysis of nickel-based superalloy Nimonic 90: a comparison between wet and LCO2 as a cryogenic coolant. Int J Adv Manuf Technol 113, 3613–3628 (2021). https://doi.org/10.1007/s00170-021-06793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06793-1

Keywords

Navigation