Log in

The risk of osteochondral fracture after patellar dislocation is related to patellofemoral anatomy

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Despite the comprehensive literature on the anatomical risk factors for patellar dislocation, knowledge on the risk factors for subsequent osteochondral fracture (OCF) remains limited.

Methods

Magnetic resonance imaging was used to compare measures of patellofemoral anatomy in patients with OCF after patellar dislocation and propensity score matched patients without OCF. For differing measures, limit values showing a 50% probability for the occurrence of OCF were calculated using predictive logistic regression modelling. Proportions of abnormal measures in the groups were compared using Chi-square test. The association of anatomical measures with OCF location was examined by comparing subgroup mean values in the different OCF locations.

Results

Propensity score matching provided a total of 111 matched pairs of patients with OCF and patients without OCF. The patients with and without OCF differed in patellotrochlear index (PTI; 0.54 [95% CI 0.52–0.57] vs. 0.47 [95% CI 0.45–0.49]; p < 0.001), tibial tubercle-posterior cruciate ligament distance (TT-PCL; 21.6 mm [95% CI 21.0–22.3 mm] vs. 20.5 mm [95% CI 20.0–21.1 mm]; p = 0.013), trochlear depth (2.5 mm [95% CI 2.3–2.7 mm] vs. 3.0 mm [95% CI 2.8–3.2 mm]; p < 0.001) trochlear facet asymmetry ratio (0.54 [95% CI 0.51–0.57] vs. 0.43 [95% CI 0.42–0.45]; p < 0.001) and trochlear condyle asymmetry ratio (1.04 [95% CI 1.03–1.04] vs. 1.05 [95% CI 1.04–1.05]; 0.013. Thresholds for increased OCF risk were > 0.51 for PTI  > 21.1 mm for TT-PCL < 2.8 mm for trochlear depth > 0.48 for trochlear facet asymmetry ratio and < 1.04 for trochlear condyle asymmetry ratio.

Conclusion

In patients with OCF after patellar dislocation, trochlear configuration and patella vertical location were closer to normal anatomy, whereas patella lateralization was more severe when compared to patients without OCF. These anatomical factors contribute to the risk of OCF during patellar dislocation.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arendt EA, England K, Agel J, Tompkins MA (2017) An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc 25:3099–3107

    Article  Google Scholar 

  2. Askenberger M, Janarv PM, Finnbogason T, Arendt EA (2016) Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 45:50–58

    Article  Google Scholar 

  3. Dejour D, Le Coultre B (2018) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc 26:8–15

    Article  Google Scholar 

  4. Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA (2020) Factors associated with an increased risk of recurrence after a first-time patellar dislocation: a systematic review and meta-analysis. Am J Sports Med 48:2552–2562

    Article  Google Scholar 

  5. Parikh SN, Lykissas MG, Gkiatas I (2018) Predicting risk of recurrent patellar dislocation. Curr Rev Musculoskelet Med 11:253–260

    Article  Google Scholar 

  6. Askenberger M, Arendt EA, Ekström W, Voss U, Finnbogason T, Janarv P-M (2016) Medial patellofemoral ligament injuries in children with first-time lateral patellar dislocations: a magnetic resonance imaging and arthroscopic study. Am J Sports Med 44:152–158

    Article  Google Scholar 

  7. Zheng L, Ding H-y, Feng Y, Sun B-s, Zhu L-l, Zhang G-y (2020) Gender-related differences in concomitant articular injuries after acute lateral patellar dislocation. Injury. https://doi.org/10.1016/j.injury.2020.10.065

    Article  PubMed  Google Scholar 

  8. Nietosvaara Y, Aalto K, Kallio PE (1994) Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop 14:513–515

    Article  CAS  Google Scholar 

  9. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2018) Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health 10:146–151

    Article  Google Scholar 

  10. Sillanpää P, Mattila VM, Iivonen T, Visuri T, Pihlajamäki H (2008) Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc 40:606–611

    Article  Google Scholar 

  11. Sanders TL, Pareek A, Johnson NR, Stuart MJ, Dahm DL, Krych AJ (2017) Patellofemoral arthritis after lateral patellar dislocation: a matched population-based analysis. Am J Sports Med 45:1012–1017

    Article  Google Scholar 

  12. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    Article  Google Scholar 

  13. Seeley MA, Knesek M, Vanderhave KL (2013) Osteochondral injury after acute patellar dislocation in children and adolescents. J Pediatr Orthop 33:511–518

    Article  Google Scholar 

  14. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  Google Scholar 

  15. Statistics Finland. www.stat.fi/index_en.html

  16. Finnish Ministry of Justice (2010) Medical research act, 488/1999. Edita Publishing Ltd.

    Google Scholar 

  17. World Health Organization (2004) ICD-10: international statistical classification of diseases and related health problems: tenth revision, 2nd edn. World Health Organization

    Google Scholar 

  18. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52

    Article  Google Scholar 

  19. Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101–104

    Article  CAS  Google Scholar 

  20. Caton J, Deschamps G, Chambat P, Lerat J, Dejour H (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317

    CAS  PubMed  Google Scholar 

  21. Biedert RM, Albrecht S (2006) The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 14:707–712

    Article  Google Scholar 

  22. Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G (2014) Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg 96:318–324

    Article  Google Scholar 

  23. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle–posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40:1119–1125

    Article  Google Scholar 

  24. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864

    Article  CAS  Google Scholar 

  25. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination—initial experience. Radiology 216:582–585

    Article  CAS  Google Scholar 

  26. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  Google Scholar 

  27. Arendt EA, Askenberger M, Agel J, Tompkins MA (2018) Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 46:3385–3390

    Article  Google Scholar 

  28. Gravesen KS, Kallemose T, Blønd L, Troelsen A, Barfod KW (2018) High incidence of acute and recurrent patellar dislocations: a retrospective nationwide epidemiological study involving 24.154 primary dislocations. Knee Surg Sports Traumatol Arthrosc 26:1204–1209

    PubMed  Google Scholar 

  29. Kuss O (2013) The z-difference can be used to measure covariate balance in matched propensity score analyses. J Clin Epidemiol 66:1302–1307

    Article  Google Scholar 

  30. Brady JM, Rosencrans AS, Stein BES (2018) Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med 11:261–265

    Article  Google Scholar 

  31. Danova N, Colopy S, Radtke C, Kalscheur V, Markel M, Vanderby R Jr et al (2003) Degradation of bone structural properties by accumulation and coalescence of microcracks. Bone 33:197–205

    Article  CAS  Google Scholar 

  32. Muir P, McCarthy J, Radtke C, Markel M, Santschi EM, Scollay M et al (2006) Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 38:342–349

    Article  CAS  Google Scholar 

  33. Nagaraja S, Couse TL, Guldberg RE (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38:707–716

    Article  Google Scholar 

  34. Ito MM, Kida MY (2000) Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat 197:659–679

    Article  Google Scholar 

  35. Miller T, Staron R, Feldman F (1996) Patellar height on sagittal MR imaging of the knee. Am J Roentgenol 167:339–341

    Article  CAS  Google Scholar 

  36. Biedert RM, Tscholl PM (2017) Patella alta: a comprehensive review of current knowledge. Am J Orthop 46:290–300

    PubMed  Google Scholar 

  37. Daynes J, Hinckel BB, Farr J (2016) Tibial tuberosity—posterior cruciate ligament distance. J Knee Surg 29:471–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Coordination of tudy conduction: MU, VP, JR, VM, JP. Study design: MU, VP, JR, JP. Data collection: MU, VP, SH, GK. Statistical analysis: MU, VP. Data interpretation: MU, VP, JR, VM, HN, JP. Clinical consultant: HN. Manuscript preparation: MU, VP. Critical review of the manuscript: JR, VM, JP, HN, GK, SH. Approval of the final draft: MU, VP, JR, VM, JP, HN, GK, SH.

Corresponding author

Correspondence to Mikko Uimonen.

Ethics declarations

Conflict of interest

None.

Funding

None.

Ethical approval

Due to the retrospective study design with the data gathered only from electronic patient records without affecting the treatment of the patients, an ethical committee approval was not obtained or needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uimonen, M., Ponkilainen, V., Hirvinen, S. et al. The risk of osteochondral fracture after patellar dislocation is related to patellofemoral anatomy. Knee Surg Sports Traumatol Arthrosc 29, 4241–4250 (2021). https://doi.org/10.1007/s00167-021-06547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06547-2

Navigation