Log in

Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 31 May 2018

This article has been updated

Abstract

The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Change history

  • 31 May 2018

    In the original publication, the inline equations under the section ‘5.1.1 Prevailing strain’ are incorrect. They have been identified as follows.

References

  1. Saffman, P.G.: On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech. 16, 545–572 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  3. Girimaji, S.S., Pope, S.B.: Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427–458 (1990)

    Article  Google Scholar 

  4. Tsinober, A.: An Informal Conceptual Introduction to Turbulence. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  5. Ashurst, WmT, Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)

    Article  Google Scholar 

  6. Dresselhaus, E., Tabor, M.: The kinematics of stretching and alignment of material elements in general flow fields. J. Fluid Mech. 236, 415–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lapeyre, G., Klein, P., Hua, B.L.: Does the tracer gradient align with strain eigenvectors in 2D turbulence? Phys. Fluids 11, 3729–3737 (1999)

    Article  MATH  Google Scholar 

  8. Lüthi, B., Tsinober, A., Kinzelbach, W.: Lagrangian measurements of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87–118 (2005)

    Article  MATH  Google Scholar 

  9. Danish, M., Suman, S., Girimaji, S.S.: Influence of flow topology and dilatation on scalar mixing in compressible turbulence. J. Fluid Mech. 793, 633–655 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Polygiannakis, J.M., Moussas, X.: On the role of strain and vorticity in plasmas. Plasma Phys. Control. Fusion 41, 967–983 (1999)

    Article  Google Scholar 

  11. Favier, B., Bushby, P.J.: Small-scale dynamo action in rotating compressible convection. J. Fluid Mech. 690, 262–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diamessis, P.J., Nomura, K.K.: Interaction of vorticity, rate-of-strain, and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids 12, 1166–1188 (2000)

    Article  MATH  Google Scholar 

  13. Lapeyre, G., Hua, B.L., Klein, P.: Dynamics of the orientation of active and passive scalars in two-dimensional turbulence. Phys. Fluids 13, 251–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, A., Gonzalez, M., Paranthoën, P.: On the alignment dynamics of a passive scalar gradient in a two-dimensional flow. Phys. Fluids 17, 117102 (2005)

    Article  MATH  Google Scholar 

  15. Garcia, A., Gonzalez, M., Paranthoën, P.: Nonstationary aspects of passive scalar gradient behaviour. Eur. J. Mech. B 27, 433–443 (2008)

    Article  MATH  Google Scholar 

  16. Garcia, A., Gonzalez, M.: Analysis of passive scalar gradient alignment in a simplified three-dimensional case. Phys. Fluids 18, 058101 (2006)

    Article  Google Scholar 

  17. Gonzalez, M.: Kinematic properties of passive scalar gradient predicted by a stochastic Lagrangian model. Phys. Fluids 21, 055104 (2009)

    Article  MATH  Google Scholar 

  18. Jeong, E., Girimaji, S.S.: Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16, 421–432 (2003)

    Article  MATH  Google Scholar 

  19. Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holzner, M., Guala, M., Lüthi, B., Liberzon, A., Nikitin, N., Kinzelbach, W., Tsinober, A.: Viscous tilting and production of vorticity in homogeneous turbulence. Phys. Fluids 22, 061701 (2010)

    Article  MATH  Google Scholar 

  21. Kida, S., Takaoka, M.: Breakdown of frozen motion of vorticity field and vorticity reconnection. J. Phys. Soc. Jpn. 60, 2184–2196 (1991)

    Article  Google Scholar 

  22. Constantin, P., Procaccia, I., Segel, D.: Creation and dynamics of vortex tubes in three-dimensional turbulence. Phys. Rev. E 51, 3207–3222 (1995)

    Article  MathSciNet  Google Scholar 

  23. Protas, B., Babiano, A., Kevlahan, N.K.-R.: On geometrical alignment properties of two-dimensional forced turbulence. Physica D 128, 169–179 (1999)

    Article  MATH  Google Scholar 

  24. Vedula, P., Yeung, P.K., Fox, R.O.: Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 29–60 (2001)

    Article  MATH  Google Scholar 

  25. Brandenburg, A., Procaccia, I., Segel, D.: The size and dynamics of magnetic flux structures in magnetohydrodynamic turbulence. Phys. Plasmas 2, 1148–1156 (1995)

    Article  MathSciNet  Google Scholar 

  26. Gonzalez, M.: Influence of molecular diffusion on alignment of vector fields: Eulerian analysis. Theor. Comput. Fluid Dyn. 31, 211–220 (2017)

    Article  Google Scholar 

  27. Tanner, S.E.M., Hughes, D.W.: Fast-dynamo action for a family of parameterized flows. Astrophys. J. 586, 685–691 (2003)

    Article  Google Scholar 

  28. Galloway, D.J., Proctor, M.R.E.: Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691–693 (1992)

    Article  Google Scholar 

  29. Childress, S., Soward, A.M.: Scalar transport and alpha-effect for a family of cat’s-eye flows. J. Fluid Mech. 205, 99–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gonzalez, M.: Effect of orientation dynamics on the growth of a passive vector in a family of model flows. Fluid Dyn. Res. 46, 015510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gonzalez, M., Paranthoën, P.: On the role of unsteady forcing of tracer gradient in local stirring. Eur. J. Mech. B 29, 143–152 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gonzalez.

Additional information

Communicated by Rupert Klein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, M. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow. Theor. Comput. Fluid Dyn. 32, 521–533 (2018). https://doi.org/10.1007/s00162-018-0459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-018-0459-z

Keywords

Navigation