Log in

Nonlinear isotropic elastic reduced and full Cosserat media: waves and instabilities

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider two types of the nonlinear elastic Cosserat media: a full one, in which the strain energy depends both on the Cosserat deformation tensor and wryness tensor, and the reduced one, in which the strain energy depends only on the Cosserat deformation tensor, thus excluding its dependence on the gradient of micro-rotation. For these media, we obtain the equations for small deviations for an arbitrary nonlinear equilibrium and any type of elastic energy, which can be expanded into the Taylor series near this equilibrium. Then we consider an isotropic material under isotropic tension or compression and show that the equations for small deviations coincide with the equations of motion for the corresponding linear elastic continuum. For a wide class of materials with convex energy, strong compression leads to the instability of the medium caused by shear perturbations, and strong tension—to the instability with respect to shear–rotational perturbations. The last mechanism of instability is absent in the classical elastic continuum. For the reduced medium in the stable domain, shear–rotational wave has a forbidden band of frequencies, demonstrates strong dispersion near this zone, and there is a resonant frequency corresponding to the independent rotational oscillations. Characteristic frequencies depend on the stress state. Thus, it is a single negative acoustic metamaterial with a tunable band gap, depending on the nonlinear stress state, with respect to the shear waves. In the forbidden zone, localization phenomena near heterogeneities are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A.: Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica 49(8), 1751–1761 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Beere, W.: Grain-boundary sliding controlled creep: its relevance to grain rolling and superplasticity. J. Mater. Sci. 12(10), 2093–2098 (1977)

    ADS  Google Scholar 

  3. Bell, J.: The Experimental Foundations of Solid Mechanics. Springer, Berlin (1984)

    Google Scholar 

  4. Besdo, D.: Inelastic behaviour of plane frictionless block systems described as Cosserat media. Arch. Mech. 37(6), 603–619 (1985)

    MATH  Google Scholar 

  5. Boldyreva, E.: High-pressure polymorphs of molecular solids: when are they formed, and when are they not? Some examples of the role of kinetic control. Cryst. Growth Des. 7(9), 1662–1668 (2007)

    Google Scholar 

  6. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263–376 (2005)

    ADS  Google Scholar 

  7. Corfdir, A., Lerat, P., Roux, J.N.: Translation and rotation of grains within an interface between granular media and structure. In: Powders and Grains 2001: Proceedings of the Fourth International Conference on Micromechanics of Granular Media, Sendai, Japan, 21–25 May 2001. Taylor & Francis, p. 315 (2001)

  8. Cosserat, E.: Théorie des corps deformables. Hermann, Paris (1909). In French

    MATH  Google Scholar 

  9. Curie, P.: Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. Journal de physique théorique et appliquée 3(1), 393–415 (1894). In French

    MATH  Google Scholar 

  10. Dmitriev, S., Semagin, D., Shigenari, T., Abe, K., Nagamine, M., Aslanyan, T.: Molecular and lattice dynamic study on modulated structures in quartz. Phys. Rev. B 68(5), 052101–4 (2003)

    ADS  Google Scholar 

  11. Druyanov, B.: Applied Plasticity Theory for Porous Bodies. Mashinostroenie, Moscow (1989). In Russian

    Google Scholar 

  12. Eremeev, V.A., Zubov, L.M.: On the stability of elastic of elastic bodies with couple stresses. Mechanics of solids c/c of Izvestiya Akademii Nauk SSSR, Mekhanika tverdogo tela 29, 172–172 (1994)

    Google Scholar 

  13. Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

    Google Scholar 

  14. Eringen, A.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, Berlin (2012)

    MATH  Google Scholar 

  15. Erofeev, V., Leontieva, A., Malkhanov, A.: Stationary longitudinal thermoelastic waves and the waves of the rotation type in the non-linear micropolar medium. ZAMM J. Appl. Math. and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(9), 1064–1071 (2017)

    ADS  MathSciNet  Google Scholar 

  16. Gilabert, F., Roux, J.N., Castellanos, A.: Computer simulation of model cohesive powders: plastic consolidation, structural changes, and elasticity under isotropic loads. Phys. Rev. E 78(3), 031305 (2008)

    ADS  Google Scholar 

  17. Grekova, E., Kulesh, M., Herman, G.: Waves in linear elastic media with microrotations, part 2: isotropic reduced Cosserat model. Bull. Seismol. Soc. Am. 99(2B), 1423 (2009)

    Google Scholar 

  18. Grekova, E., Zhilin, P.: Basic equations of kelvin’s medium and analogy with ferromagnets. J. Elast. Phys. Sci. Solids 64(1), 29–70 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Grekova, E.F.: Reduced enhanced elastic continua as acoustic metamaterials. In: Altenbach, H., Belyaev, A.K., Eremeyev, V.A., Krivtsov, A.M., Porubov, A.V. (eds.) Dynamical Processes in Generalized Continua and Structures, pp. 253–268. Springer (2019)

  20. Harris, D.: A hyperbolic augmented elasto-plastic model for pressure-dependent yield. Acta Mech. 225(8), 2277–2299 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Hatchell, P., Bourne, S.: Rocks under strain: strain-induced time-lapse time shifts are observed for depleting reservoirs. Lead. Edge 24(12), 1222–1225 (2005)

    Google Scholar 

  22. Kafadar, C., Eringen, A.: Micropolar media. Int. J. Eng. Sci. 9, 271–305 (1971)

    MATH  Google Scholar 

  23. Koval, G., Chevoir, F., Roux, J.N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granular Matter 13, 525–540 (2011)

    Google Scholar 

  24. Kozak, J.: Tutorial on earthquake rotational effects: historical examples. Bull. Seismol. Soc. Am. 99, 998–1010 (2009)

    Google Scholar 

  25. Lakes, R.: Stability of Cosserat solids: size effects, ellipticity and waves. J. Mech. Mater. Struct. 13(1), 83–91 (2018)

    MathSciNet  Google Scholar 

  26. Langdon, T.: A unified approach to grain boundary sliding in creep and superplasticity. Acta metallurgica et materialia 42(7), 2437–2443 (1994)

    ADS  Google Scholar 

  27. Merkel, A., Tournat, V., Gusev, V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82(3), 031305 (2010)

    ADS  Google Scholar 

  28. Merkel, A., Tournat, V., Gusev, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011)

    ADS  Google Scholar 

  29. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215–234 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 48(6–7), 498–505 (2008)

    Google Scholar 

  31. Müller, W.H., Vilchevskaya, E.N., Weiss, W.: Micropolar theory with production of rotational inertia: a farewell to material description. Phys. Mesomech. 20(3), 250–262 (2017)

    Google Scholar 

  32. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958)

    MathSciNet  MATH  Google Scholar 

  33. Nowacki, W.: Theory of Micropolar Elasticity, vol. 25. Springer, Berlin (1972)

    MATH  Google Scholar 

  34. Oda, M., Iwashita, K.: Mechanics of Granular Materials: An Introduction. Taylor & Francis, Abingdon (1999)

    Google Scholar 

  35. Sadovskii, V., Sadovskaya, O.: Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum. Wave Motion 52, 138–150 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Schwartz, L., Johnson, D., Feng, S.: Vibrational modes in granular materials. Phys. Rev. Lett. 52(10), 831–834 (1984)

    ADS  Google Scholar 

  37. Sheydakov, D.: Size effect on buckling of non-uniform circular plate made of foam material. Mater. Phys. Mech. 28(1–2), 26–30 (2016)

    Google Scholar 

  38. Sheydakov, D., Altenbach, H.: Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math. Mech. Solids 21(9), 1082–1094 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Silver, P.G., Daley, T.M., Niu, F., Majer, E.L.: Active source monitoring of cross-well seismic travel time for stress-induced changes. Bull. Seismol. Soc. Am. 97(1B), 281–293 (2007)

    Google Scholar 

  40. Stupazzini, M., de la Puente, J., Smerzini, C., Kaser, M., Igel, H., Castellani, A.: Study of rotational ground motion in the near-field region. Bull. Seismol. Soc. Am. 99(2B), 1271 (2009)

    Google Scholar 

  41. Suiker, A., Metrikine, A., De Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38(9), 1563–1583 (2001)

    MATH  Google Scholar 

  42. Toupin, R., Bernstein, B.: Sound waves in deformed perfectly elastic materials. acoustoelastic effect. J. Acoust. Soc. Am. 33(2), 216–225 (1961)

    ADS  MathSciNet  Google Scholar 

  43. Turco, E.: In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech. Res. Commun. 92, 61–66 (2018)

    Google Scholar 

  44. Vardoulakis, I., Unterreiner, P.: Interfacial localisation in simple shear tests on a granular medium modelled as Cosserat continuum. Studies in applied mechanics. In: Mechanics of Geomaterials Interfaces, vol. 42, pp. 487–512 (1995)

  45. Vikulin, A., Ivanchin, A., Tveritinova, T.: Moment vortex geodynamics. Mosc. Univ. Geol. Bull. 66(1), 29–36 (2011)

    Google Scholar 

  46. Zhilin, P., Altenbach, H.: The theory of elastic simple shells. Adv. Mech. 11(4), 107–147 (1988). (in Russian)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena F. Grekova.

Additional information

Communicated by Victor Eremeyev and Holm Altenbach.

To the memory of Pavel Andreyevich Zhilin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Russian Foundation for Basic Research (Grant 17-01-00230).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grekova, E.F. Nonlinear isotropic elastic reduced and full Cosserat media: waves and instabilities. Continuum Mech. Thermodyn. 31, 1805–1824 (2019). https://doi.org/10.1007/s00161-019-00829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00829-4

Keywords

Navigation