Log in

A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part II: Thermodynamics of a rank-4 damage model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider a viscoelastic–viscoplastic continuum damage model for polycrystalline ice. The focus lies on the thermodynamics particularities of such a constitutive model and restrictions on the constitutive theory which are implied by the entropy principle. We use Müller’s formulation of the entropy principle, together with Liu’s method of exploiting it with the aid of Lagrange multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carathéodory C.: Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen 67(3), 355–386 (1909)

    Article  MathSciNet  Google Scholar 

  2. Duddu R., Waisman H.: A temperature dependent creep damage model for polycrystalline ice. Mech. Mater. 46, 23–41 (2012)

    Article  Google Scholar 

  3. Hutter K.: The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mech. 27(1), 1–54 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  4. Karr D.G., Choi K.: A three-dimensional constitutive damage model for polycrystalline ice. Mech. Mater. 8(1), 55–66 (1989)

    Article  Google Scholar 

  5. Keller, A., Hutter, K.: A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part I: Constitutive models. Submitted to Continuum Mechanics and Thermodynamics

  6. Keller, A., Hutter, K.: On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J. Mech. Phys. Solids 59(5), 1115–1120 (2011). doi:10.1016/j.jmps.2011.01.015. http://www.sciencedirect.com/science/article/B6TXB-523CDY6-2/2/bda2f1b70e114f23d673d5cbff6f7e1d

    Google Scholar 

  7. Lemaitre J., Lippmann H.: A course on damage mechanics, vol. 2. Springer, Berlin (1996)

    Book  Google Scholar 

  8. Liu I.S.: Method of Lagrange multipliers for exploitation of entropy principle. Arch. Ration. Mech. Anal. 46(2), 131–148 (1972)

    MATH  Google Scholar 

  9. Mahrenholtz, O., Wu, Z.: Determination of creep damage parameters for polycrystalline ice. Advances in Ice Technology (3rd Int. Conf. Ice Tech./Cambridge USA), pp. 181–192 (1992)

  10. Müller I.: Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Ration. Mech. Anal. 40(1), 1–36 (1971)

    Article  MATH  Google Scholar 

  11. Pralong, A., Funk, M.: Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res. 110, (B01309) (2005). doi:10.1029/2004JB003104

  12. Pralong A., Hutter K., Funk M.: Anisotropic damage mechanics for viscoelastic ice. Contin. Mech. Thermodyn. 17(5), 387–408 (2006). doi:10.1007/s00161-005-0002-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Rist, M., Murrell, S.: Ice triaxial deformation and fracture. J. Glaciol. 40(135), 305–318 (1994)

    Google Scholar 

  14. Sinha N.K.: Crack-enhanced creep in polycrystalline material: Strain-rate sensitive strength and deformation of ice. J. Mater. Sci. 23(12), 4415–4428 (1988)

    Article  ADS  Google Scholar 

  15. Szyszkowski W., Glockner P.: On a multiaxial constitutive law for ice. Mech. Mater. 5(1), 49–71 (1986)

    Article  Google Scholar 

  16. Weiss J., Gay M.: Fracturing of ice under compression creep as revealed by a multifractal analysis. J. Geophys. Res. 103(B10), 24005–24024 (1998)

    Article  ADS  Google Scholar 

  17. **ao J., Jordaan I.: Application of damage mechanics to ice failure in compression. Cold Reg. Sci. Technol. 24(3), 305–322 (1996)

    Article  Google Scholar 

  18. Zheng Q.: Theory of representations for tensor functions—a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47(11), 545–587 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Keller.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, A., Hutter, K. A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part II: Thermodynamics of a rank-4 damage model. Continuum Mech. Thermodyn. 26, 895–906 (2014). https://doi.org/10.1007/s00161-014-0335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0335-z

Keywords

Navigation