Log in

Hamiltonian and Lagrangian theory of viscoelasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

]a, b[:

the open interval with ends at a, b;

\(\dot{u}\) :

 = ∂u/∂t;

\(f^\prime\) :

distributional derivative of f;

δ a :

Dirac delta measure with support at a;

\({\fancyscript{L}}^2({\mathbb{R}}_+;\Sigma;m), \Upsigma\) :

: page 9;

\({\langle}{\bf a}, {\bf b} {\rangle}=a_{kl} {\,}b_{kl}\) :

scalar product on S;

|a|:

\(:={\langle}{\bf a},{\bf a} \rangle^{1/2}\) ;

\({\bf A} \geq 0\,({\bf A} \in \Sigma )\) :

is equivalent to \(\langle{\bf v}, {\bf A}\, {\bf v} {\rangle}\geq 0\) for all \({\bf v} \in S\) ;

λ :

the Lebesgue measure on Ω \(\subset{\mathbb{R}}^d\) ;

S :

space of real symmetric tensors of rank 2;

\(S_{\mathbb{C}} = S \oplus {\rm i} \, S\) :

space of complex symmetric rank 2 tensors;

Σ, Σ \(_{\mathbb{C}}\) :

space of symmetric operators on S, \(S_{\mathbb{C}}\) ;

\({\fancyscript{I}}\) :

: page 9;

\(\langle {\bf a}, {\bf b} \rangle_{{\mathbb{C}}} = \overline{a_{kl}} \, b_{kl}\) :

scalar product on \(S_{\mathbb{C}}\) ;

da :

surface area in \({\mathbb{R}}^d\) .

References

  1. Abramowitz M. and Stegun I. (1970). Mathematical Tables. Dover, New York

    Google Scholar 

  2. Agrawal O.P. (2002). Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272: 368–379

    Article  MATH  MathSciNet  Google Scholar 

  3. Allard J.F. (1993). Propagation of Sound in Porous Media. Elsevier, London

    Google Scholar 

  4. Bateman H. (1931). On dissipative systems and related variational principles. Phys. Rep. 38: 815–819

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauer P.S. (1931). Dissipative dynamical systems I. Proc. Natl. Acad. Sci. 54: 311–314

    Article  Google Scholar 

  6. Beris A.N. (2001). Bracket formulation as a source for the development of dynamic equations in continuum mechanics. J. Non-Newton. Fluid Mech. 96: 119–136

    Article  MATH  Google Scholar 

  7. Beris A.N. and Edwards B.J. (1990). Poisson bracket formulation of viscoelastic flow equations of differential type: a unified approach. J. Rheol. 34: 503–538

    Article  MATH  MathSciNet  Google Scholar 

  8. Biot M.A. (1956). Mechanics of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27: 459–467

    Article  MathSciNet  Google Scholar 

  9. Breuer S. and Onat E.T. (1964). On the determination of free energy in viscoelastic solids. ZAMP 15: 185–191

    Google Scholar 

  10. Bruneau L. and De Bièvre S. (2002). A Hamiltonian model for linear friction in a homogeneous medium. Commun. Math. Phys. 229: 511–542

    Article  MATH  Google Scholar 

  11. Chandrasekhar V.K., Senthilvelan M. and Lakshmanan M. (2007). On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48: 032,701

    Google Scholar 

  12. Cresson J. (2007). Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48: 033,504

    MathSciNet  Google Scholar 

  13. DeVault G.P. and McLennan J.A. (1965). Statistical mechanics of viscoelasticity. Phys. Rev. 137: A724–A730

    Article  MathSciNet  Google Scholar 

  14. Dreisigmeyer D.W. and Young P.M. (2004). Extending Bauer’s corollary to fractional derivatives. J. Phys. A Math. Gen. 37: L117–L121

    Article  MATH  MathSciNet  Google Scholar 

  15. Edwards B.J. and Dressler M. (2001). A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations. J. Non-Newton. Fluid Mech. 96: 163–175

    Article  MATH  Google Scholar 

  16. Erdélyi A. (1956). Asymptotic expansions of Fourier integrals involving logarithmic singularities. J. Soc. Ind. Appl. Math. 4: 38–47

    Article  MATH  Google Scholar 

  17. Figotin A. and Schenker J.H. (2007). Hamiltonian structure for dispersive and dissipative dynamical systems. J. Stat. Phys. 128: 969–1056

    Article  MATH  MathSciNet  Google Scholar 

  18. Ford F.W., Lewis J.T. and O’Connell R.F. (1988). Independent oscillator model of a heat bath: exact diagonalization of the Hamiltonian. J. Stat. Phys. 53: 439–455

    Article  MathSciNet  Google Scholar 

  19. Gripenberg G., Londen S.O. and Staffans O.J. (1990). Volterra Integral and Functional Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Grmela M. (1984). Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. 102A: 355–358

    MathSciNet  Google Scholar 

  21. Grmela M. and Öttinger H.C. (1997). Dynamics and thermodynamics of complex fluids. I: Development of the GENERIC formalism. Phys. Rev. E 56(3): 6620–6632

    Article  MathSciNet  Google Scholar 

  22. Gurtin M.E. and Hrusa W.J. (1988). On energies for nonlinear viscoelastic materials of single-integral type. Q. Appl. Math. XLVI: 381–392

    MathSciNet  Google Scholar 

  23. Hanyga A. (2003). Well-posedness and regularity for a class of linear thermoviscoelastic materials. Proc. R. Soc. Lond. A 459: 2281–2296

    Article  MATH  MathSciNet  Google Scholar 

  24. Hanyga A. (2005). Viscous dissipation and completely monotone stress relaxation functions. Rheol. Acta 44: 614–621. doi:10.1007/s00397-005-0443-6

    Article  Google Scholar 

  25. Hanyga A. and Seredyńska M. (2007). Multiple-integral viscoelastic constitutive equations. Int. J. Nonlin. Mech. 42: 722–732. doi:10.1016/j.ijnonlinmec.2007.02.003

    Article  Google Scholar 

  26. Hanyga A. and Seredyńska M. (2007). Relations between relaxation modulus and creep compliance in anisotropic linear viscoelasticity. J. Elast. 88: 41–61

    Article  MATH  Google Scholar 

  27. Holm D.D. and Kupershmidt B.A. (1983). Poisson brackets and Clebsch representations for Magnetohydrodynamics, multifluid plasmas and elasticity. Phys. D 6: 347–363

    Article  MathSciNet  Google Scholar 

  28. Jakšić V. and Pillet C.A. (1998). Ergodic properties of classical dissipative systems. I. Acta Math. 181: 245–282

    Article  MATH  Google Scholar 

  29. Kaufman A.N. (1984). Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. 100A: 419–422

    MathSciNet  Google Scholar 

  30. Kubo R., Toda N. and Hashitsune N. (1991). Statistical Physics II: Nonequilibrium Statistical Physics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  31. Malliavin P., Airault H., Kay L. and Letac G. (1995). Integration and Probability. Springer, New York

    MATH  Google Scholar 

  32. Maltsev A.Y. and Novikov S.P. (2001). On the local systems Hamiltonian in the weakly non-local Poisson brackets. Phys. D 156: 53–80

    Article  MATH  MathSciNet  Google Scholar 

  33. Marsden, J.E. (ed.) (1983). Fluids and Plasmas: Geometry and Dynamics, Contemporary Mathematics, vol. 28. American Mathematical Society, Providence

    Google Scholar 

  34. Morrison P.J. (1984). Bracket formulation for irreversible classical fields. Phys. Lett. 100A: 423–427

    MathSciNet  Google Scholar 

  35. Morrison P.J. (1986). A paradigm for joined Hamiltonian and dissipative systems. Physica 18D: 410–419

    MathSciNet  Google Scholar 

  36. Morrison P.J. (1998). Hamiltonian description of an ideal fluid. Rev. Mod. Phys. 70: 467–521

    Article  MathSciNet  Google Scholar 

  37. Podlubny I. (1998). Fractional Differential Equations. Academic, San Diego

    Google Scholar 

  38. Riewe F. (1996). Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(3): 1890–1899

    Article  MathSciNet  Google Scholar 

  39. Riewe F. (1997). Mechanics with fractional derivative. Phys. Rev. E 55(3): 3581–3592

    Article  MathSciNet  Google Scholar 

  40. Staffans O.J. (1994). Well-posedness and stabilizability of a viscoelastic equation in energy space. Trans. Am. Math. Soc. 345: 527–575

    Article  MATH  MathSciNet  Google Scholar 

  41. Stallinga S. (2006). Energy and momentum of light in dielectric media. Phys. Rev. E 73(3): 026606

    Article  Google Scholar 

  42. Tip A. (1998). Linear absorptive dielectrics. Phys. Rev. A 57: 4818–4841

    Article  Google Scholar 

  43. Tip A. (2004). Hamiltonian formalism for charged-particle systems interacting with absorptive dielectrics. Phys. Rev. A 69: 013804

    Article  Google Scholar 

  44. Widder D.V. (1946). The Laplace Transform. Princeton University Press, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hanyga.

Additional information

Communicated by V. Berdichevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A., Seredyńska, M. Hamiltonian and Lagrangian theory of viscoelasticity. Continuum Mech. Thermodyn. 19, 475–492 (2008). https://doi.org/10.1007/s00161-007-0065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0065-6

Keywords

PACS

Navigation