Log in

A truly meshless approach to structural topology optimization based on the Direct Meshless Local Petrov–Galerkin (DMLPG) method

  • Research
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

With a wide applicability in several types of engineering problems, topology optimization is one of the most interesting fields of structural optimization. Many meshless methods have been developed, however, they were less explored in topology optimization compared to other methods, as the Finite Element Method (FEM). The Direct Meshless Local Petrov–Galerkin (DMLPG) is characterized as a truly meshless method since it does not use a mesh at any stage of its development. It has been applied to solve many boundary value problems, achieving results with good precision and computational efficiency. Instead of performing the numerical integral of complicated shape functions, the DMLPG considers low-degree polynomials. The new topology optimization approach proposed in this work couples the DMLPG method with a Bi-Directional Evolutionary Structural Optimization (BESO) method. DMLPG is used to obtain smooth nodal displacements, strains, and stresses, and BESO updates the structural geometry based on design sensitivity values. Numerical examples performed were compared with the results obtained with FEM and with other works in the literature, showing the applicability and validity of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abbaszadeh M, Dehghan M (2020) The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic-quintic complex Ginzburg-Landau equations on complicated geometries. Eng Comput 38:1543–1557

    Article  Google Scholar 

  • Abbaszadeh M, Bayat M, Dehghan M (2022) Numerical investigation of the magnetic properties and behavior of electrically conducting fluids via the local weak form method. Appl Math Comput 433:127–293

    MathSciNet  Google Scholar 

  • Ai L, Gao XL (2019) Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm. Compos Struct 229:111318

    Article  Google Scholar 

  • Ansola R, Veguería E, Canales J, Tárrago JA (2007) A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem Anal Des 44(1–2):53–62

    Article  Google Scholar 

  • Atluri SN, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3:11–51

    MathSciNet  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  Google Scholar 

  • Babuska I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    Article  MathSciNet  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459

    Article  Google Scholar 

  • Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidisc Optim 41:453–464

    Article  MathSciNet  Google Scholar 

  • Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using meshfree method. Comput Methods Appl Mech Eng 195(44):5909–5925

    Article  MathSciNet  Google Scholar 

  • Chu D, **e YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251

    Article  Google Scholar 

  • Cui M, Chen H, Zhou J, Wang F (2017) A meshless method for multi-material topology optimization based on the alternating active-phase algorithm. Eng Comput 33:1–14

    Article  Google Scholar 

  • Darani MA (2017) Direct meshless local Petrov-Galerkin method for the two-dimensional Klein-Gordon equation. Eng Anal Bound Elem 74:1–13

    Article  MathSciNet  Google Scholar 

  • Dehghan M, Hooshyarfarzin B, Abbaszadeh M (2022) Numerical simulation based on a combination of finite-element method and proper orthogonal decomposition to prevent the groundwater contamination. Eng Comput 38:3445–3461

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331–390

    Article  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Burble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375

    Article  Google Scholar 

  • Gonçalves D, Lopes J, Campilho R, Belinha J (2022a) The radial point interpolation method combined with a bi-directional structural topology optimization algorithm. Eng Comput 38:1–15

    Article  Google Scholar 

  • Gonçalves D, Lopes J, Campilho R, Belinha J (2022b) Topology optimization of light structures using the natural neighbour radial point interpolation method. Meccanica 57:659–676

    Article  MathSciNet  Google Scholar 

  • Gonçalves D, Lopes J, Campilho R, Belinha J (2022c) Topology optimization using a natural neighbour meshless method combined with a bi-directional evolutionary algorithm. Math Comput Simul 194:308–328

    Article  MathSciNet  Google Scholar 

  • Guennebaud G, Jacob B et al (2019) Eigen v3.3.7. http://eigen.tuxfamily.org

  • Hasanpour K, Mirzaei D (2018) A fast meshfree technique for the coupled thermoelasticity problem. Acta Mech 229:2657–2673

    Article  MathSciNet  Google Scholar 

  • He Q, Kang Z, Wang Y (2014) A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech 54:629–644

    Article  MathSciNet  Google Scholar 

  • Huang X, **e YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049

    Article  Google Scholar 

  • Huang X, **e YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401

    Article  MathSciNet  Google Scholar 

  • Huang X, **e YM (2010) A further review of ESO type methods for topology optimization. Struct Multidisc Optim 41:671–683

    Article  Google Scholar 

  • Ilati M, Dehghan M (2016) Remediation of contaminated groundwater by meshless local weak forms. Comput Math Appl 72:2408–2416

    Article  MathSciNet  Google Scholar 

  • Jiang X, Ma J, Teng X (2023) A modified bi-directional evolutionary structural optimization procedure with variable evolutionary volume ratio applied to multi-objective topology optimization problem. Comput Model Eng Sci 135:511–526

    Google Scholar 

  • Juan Z, Shuyao L, Guangyao L (2010) The topology optimization design for continuum structures based on the element free Galerkin method. Eng Anal Bound Elem 34(7):666–672

    Article  MathSciNet  Google Scholar 

  • Khan W, Siraj-ul-Islam, Ullah B (2019) Structural optimization based on meshless element free Galerkin and level set methods. Comput Methods Appl Mech Eng 344:144–163

    Article  MathSciNet  Google Scholar 

  • Koke H, Weiss L, Hühne C (2015) BESO with strain controlled material assignment. In: 2015 IEEE congress on evolutionary computation (CEC). pp 626–631

  • Lee SJ, Lee CK, Bae JE (2009) Evolution of 2D truss structures using topology optimization technique with meshless method. In: Symposium of the international association for shell and spatial structures (50th. 2009. Valencia). Evolution and trends in design, analysis and construction of shell and spatial structures: proceedings. Editorial Universitat Politècnica de València, pp 1059–4065

  • Li S, Atluri SN (2008a) The MLPG mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. Comput Model Eng Sci 30(1):37–56

    Google Scholar 

  • Li S, Atluri SN (2008b) Topology-optimization of structures based on the MLPG mixed collocation method. Comput Model Eng Sci 26:61–74

    Google Scholar 

  • Li Q, Shen S, Han ZD, Atluri SN (2003) Application of meshless local Petrov-Galerkin (MLPG) to problems with singularities, and material discontinuities, in 3-D elasticity. Comput Model Eng Sci 4:571–586

    MathSciNet  Google Scholar 

  • Li J, Guan Y, Wang G, Wang G, Zhang H, Lin J (2020) A meshless method for topology optimization of structures under multiple load cases. Structures 25:173–179

    Article  Google Scholar 

  • Li L, Liu C, Du Z, Zhang W, Guo X (2022) A meshless moving morphable component-based method for structural topology optimization without weak material. Acta Mech Sin 38(5):361–365

    Article  MathSciNet  Google Scholar 

  • Lin J, Guan Y, Zhao G, Naceur H, Lu P (2017) Topology optimization of plane structures using smoothed particle hydrodynamics method. Int J Numer Methods Eng 110(8):726–744

    Article  MathSciNet  Google Scholar 

  • Liu GR (2009) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton

    Book  Google Scholar 

  • Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  • Luo Z, Zhang N, Gao W, Ma H (2012a) Structural shape and topology optimization using a meshless Galerkin level set method. Int J Numer Methods Eng 90(3):369–389

    Article  MathSciNet  Google Scholar 

  • Luo Z, Zhang N, Ji J, Wu T (2012b) A meshfree level-set method for topological shape optimization of compliant multiphysics actuators. Comput Methods Appl Mech Eng 223–224:133–152

    Article  MathSciNet  Google Scholar 

  • Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93:443–464

    Article  MathSciNet  Google Scholar 

  • Mazzia A, Pini G, Sartoretto F (2012) Numerical investigation on direct MLPG for 2D and 3D potential problems. Comput Model Eng Sci 88:183–209

    MathSciNet  Google Scholar 

  • Mirzaei D (2011) Development of moving least squares based meshless methods. PhD Thesis, Amirkabir University of Technology

  • Mirzaei D (2013) Direct meshless local Petrov-Galerkin (DMLPG) method: a generalized MLS approximation. Appl Numer Math 68:73–82

    Article  MathSciNet  Google Scholar 

  • Mirzaei D (2014) A new low-cost meshfree method for two and three dimensional problems in elasticity. Appl Math Model 39:7181–7196

    Article  MathSciNet  Google Scholar 

  • Mirzaei D, Hasanpour K (2015) Direct meshless local Petrov-Galerkin method for elastodynamic analysis. Acta Mech 227:619–632

    Article  MathSciNet  Google Scholar 

  • Mirzaei D, Schaback R (2014) Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method. Numer Algorithms 65:275–291

    Article  MathSciNet  Google Scholar 

  • Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32:983–1000

    Article  MathSciNet  Google Scholar 

  • Nguyen MN, Bui TQ (2022) A meshfree-based topology optimization approach without calculation of sensitivity. Vietnam J Mech 44:45–58

    Article  Google Scholar 

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidisc Optim 33:375–386

    Article  MathSciNet  Google Scholar 

  • Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    Article  MathSciNet  Google Scholar 

  • Picelli R, Townsend S, Brampton C, Norato J, Kim HA (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23

    Article  MathSciNet  Google Scholar 

  • Querin O, Steven G, **e Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048

    Article  Google Scholar 

  • Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  Google Scholar 

  • Shobeiri V (2015) Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method. Eng Optim 48(3):380–396

    Article  MathSciNet  Google Scholar 

  • Shokri A, Bahmani E (2021) A study of nonlinear systems arising in the physics of liquid crystals, using MLPG and DMLPG methods. Math Comput Simul 187:261–281

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization codewritten in Matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Sohouli A, Kefal A, Abdelhamid A, Yildiz M, Suleman A (2020) Continuous density-based topology optimization of cracked structures using peridynamics. Struct Multidisc Optim 62:2375–2389

    Article  MathSciNet  Google Scholar 

  • Stoiber N, Kromoser B (2021) Topology optimization in concrete construction: a systematic review on numerical and experimental investigations. Struct Multidisc Optim 64:1725–1749

    Article  Google Scholar 

  • Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887

    Article  MathSciNet  Google Scholar 

  • Taleei A, Dehghan M (2014) Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    Article  MathSciNet  Google Scholar 

  • Teimouri M, Asgari M (2019) Multi-objective BESO topology optimization algorithm of continuum structures for stiffness and fundamental natural frequency. Struct Eng Mech 72:181–190

    Google Scholar 

  • Ullah B, Trevelyan J (2016) A boundary element and level set based topology optimisation using sensitivity analysis. Eng Anal Bound Elem 70:80–98

    Article  MathSciNet  Google Scholar 

  • Ullah B, Khan W, Siraj-ul-Islam, Ullah Z (2022a) A coupled meshless element-free Galerkin and radial basis functions method for level set-based topology optimization. J Braz Soc Mech Sci Eng 44:89

    Article  Google Scholar 

  • Ullah Z, Ullah B, Khan W, Siraj-ul-Islam (2022b) Proportional topology optimisation with maximum entropy-based meshless method for minimum compliance and stress constrained problems. Eng Comput 38:5541–5561

    Article  Google Scholar 

  • Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566

    MathSciNet  Google Scholar 

  • Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level set based framework of region representation. Struct Multidisc Optim 27:1–19

    Article  Google Scholar 

  • Wang SY, Lim KM, Khoo BC, Wang MY (2007) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421

    Article  MathSciNet  Google Scholar 

  • **a L, **a Q, Huang X, **e YM (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng 25:437–478

    Article  MathSciNet  Google Scholar 

  • **e Y, Steven G (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference computational engineering science, Hong Kong. p 471

  • **e Y, Steven G (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Zhang J, Peng J, Liu T, Chen J, Luo T, Gong S (2022a) Multi-objective periodic topology optimization of thermo-mechanical coupling structure with anisotropic materials by using the element-free Galerkin method. Int J Mech Mater Des 18:939–960

    Article  Google Scholar 

  • Zhang J, Zhang H, Chen J, Liu T, Peng J, Zhang D, Yin S (2022b) Topology optimization of periodic mechanical structures with orthotropic materials based on the element-free Galerkin method. Eng Anal Bound Elem 143:383–396

    Article  MathSciNet  Google Scholar 

  • Zhao F (2014) Topology optimization with meshless density variable approximations and BESO method. Comput Aided Des 56:1–10

    Article  MathSciNet  Google Scholar 

  • Zheng J, Long S, **ong Y, Li G (2008) A topology optimization design for the continuum structure based on the meshless numerical technique. Comput Model Eng Sci 34(2):137–154

  • Zheng J, Long S, **ong Y, Li G (2009) A finite volume meshless local Petrov–Galerkin method for topology optimization design of the continuum structures. Comput Model Eng Sci 42(1):19–34

    MathSciNet  Google Scholar 

  • Zheng J, Long S, Li G (2012) Topology optimization of free vibrating continuum structures based on the element free Galerkin method. Struct Multidisc Optim 45:119–127

    Article  MathSciNet  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336 (Second World Congress on Computational Mechanics)

    Article  Google Scholar 

  • Zhu B, Zhang X, Zhang H, Liang J, Zang H, Li H, Wang R (2020) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622

    Article  Google Scholar 

  • Zuo ZH (2010) BESO2D manual—getting started with BESO2D. https://www.cism.org.au/tools. Accessed 15 June 2023

Download references

Acknowledgements

The present research benefited from BESO MATLAB code made available by the researchers at the Centre for Innovative Structures and Materials. We would like to thank our colleagues from the Federal University of Ceará and from the State University of Piauí who provided insight and expertise.

Funding

The authors did not receive funds, grants or other support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

L.S, S.O. and C.V developed the theory. All authors conceived and planned the experiments. L.S and S.O. carried out the experiments. L.S and S.O. wrote the manuscript with support from C.V. C.V. and J.CN. supervised the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Laise Sousa.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Replication of results

We provided all the information needed to reproduce the results. Interested readers can contact the corresponding author for any additional information.

Additional information

Responsible editor: Xu Guo

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, L., Oliveira, S., Vidal, C. et al. A truly meshless approach to structural topology optimization based on the Direct Meshless Local Petrov–Galerkin (DMLPG) method. Struct Multidisc Optim 67, 110 (2024). https://doi.org/10.1007/s00158-024-03813-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-024-03813-y

Keywords

Navigation