Log in

Allgemeiner Aufbau und histologische Pathophysiologie der Tunica synovialis

Standardisierung histologischer Synovialisdiagnostik

General structure and histological pathophysiology of the tunica synovialis

Standardization of histological synovialis diagnostics

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Die Tunica synovialis besteht aus 3 Kompartimenten: der synovialen Deckzellschicht, dem synovialen Stroma und Lymphfollikeln, die je nach Krankheitsbild in unterschiedlicher Quantität vorliegen. Zur Standardisierung wurde ein einheitlich anwendbarer Synovitis-Score geschaffen, der eine Unterscheidung in Low-grade- und High-grade-Synovitis erlaubt. Dieses Scoringsystem wird international als Goldstandard der morphologischen Beschreibung krankhafter Veränderungen der Tunica synovialis angesehen. Im aktuellen Artikel wird insbesondere auf die Bedeutung synovialer Fibroblasten und auf nomenklatorische Probleme eingegangen. Daneben werden pathophysiologische Grundlagen diskutiert. Die moderne histopathologische Diagnostik inkludiert histochemische („periodic acid Schiff“ [PAS], Grocott, Goldner, Berliner-Blau-Reaktion, Kongorot-Reaktion nach Puchtler), immunhistochemische (zahlreiche Antikörper im Routinebetrieb) und molekulare Methoden (In-situ-Hybridisierung, Polymerase-Kettenreaktion [PCR], Next Generation Sequencing [NGS]), die in den vergangenen Jahren durch proteomische Methoden ergänzt wurden. Diese sog. „Omics“-Methoden werden dazu führen, dass zahlreiche neue Biomarker in die Diagnostik einbezogen werden.

Abstract

The tunica synovialis is composed of three compartments: the synovial covering cell layer, the synovial stroma and lymph follicles. These compartments may be present in varying quantities depending on the underlying disease. For standardization a uniformly applicable synovitis score has been established that enables a differentiation into low-grade and high-grade synovitis. This scoring system is internationally regarded as the current gold standard for the morphological description of pathological alterations of the tunica synovialis. This article focuses particularly on the importance of synovial fibroblasts and problems concerning the nomenclature. Furthermore, the pathophysiological principles are discussed. Modern histopathological diagnostics include histochemical (PAS, Grocott, Goldner, Prussian blue staining, Congo red staining of Puchtler), immunohistochemical (numerous antibodies in routine application) and molecular methods (in situ hybridization, polymerase chain reaction and next generation sequencing), which were supplemented by proteomic methods in recent years. These so-called omics methods will lead to the inclusion of many new biomarkers in the diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Krenn V, Perino G, Ruther W, Krenn VT, Huber M, Hugle T et al (2017) 15 years of the histopathological synovitis score, further development and review: a diagnostic score for rheumatology and orthopaedics. Pathol Res Pract 213(8):874–881

    Article  CAS  Google Scholar 

  2. Barland P, Novikoff AB, Hamerman D (1962) Electron microscopy of the human synovial membrane. J Cell Biol 14:207–220

    Article  CAS  Google Scholar 

  3. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    Article  CAS  Google Scholar 

  4. Hou J, Ouyang Y, Deng H, Chen Z, Song B, **e Z et al (2016) Whole-genome expression analysis and signal pathway screening of synovium-derived mesenchymal stromal cells in rheumatoid arthritis. Stem Cells Int 2016:1375031

    Article  Google Scholar 

  5. Li F, Tang Y, Song B, Yu M, Li Q, Zhang C et al (2019) Nomenclature clarification: synovial fibroblasts and synovial mesenchymal stem cells. Stem Cell Res Ther 10(1):260

    Article  CAS  Google Scholar 

  6. Firestein GS (1996) Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum 39(11):1781–1790

    Article  CAS  Google Scholar 

  7. Kriegsmann J, Keyszer GM, Geiler T, Brauer R, Gay RE, Gay S (1995) Expression of vascular cell adhesion molecule‑1 mRNA and protein in rheumatoid synovium demonstrated by in situ hybridization and immunohistochemistry. Lab Invest 72(2):209–214

    CAS  PubMed  Google Scholar 

  8. Ross EA, Devitt A, Johnson JR (2021) Macrophages: the good, the bad, and the gluttony. Front Immunol 12:708186

    Article  CAS  Google Scholar 

  9. Neumann E, Lefevre S, Zimmermann B, Gay S, Muller-Ladner U (2010) Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16(10):458–468

    Article  CAS  Google Scholar 

  10. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45(6):669–675

    Article  CAS  Google Scholar 

  11. Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE et al (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149(5):1607–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Neumann E, Lefevre S, Zimmermann B, Geyer M, Lehr A, Umscheid T et al (2010) Migratory potential of rheumatoid arthritis synovial fibroblasts: additional perspectives. Cell Cycle 9(12):2286–2291

    Article  CAS  Google Scholar 

  13. Jose Alcaraz M (2021) New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 194:114815

    Article  CAS  Google Scholar 

  14. Micheroli R, Elhai M, Edalat S, Frank-Bertoncelj M, Burki K, Ciurea A et al (2022) Role of synovial fibroblast subsets across synovial pathotypes in rheumatoid arthritis: a deconvolution analysis. RMD Open. https://doi.org/10.1136/rmdopen-2021-001949

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tu J, Huang W, Zhang W, Mei J, Zhu C (2021) A tale of two immune cells in rheumatoid arthritis: the crosstalk between macrophages and T cells in the synovium. Front Immunol 12:655477

    Article  CAS  Google Scholar 

  16. Cantaert T, Kolln J, Timmer T, van der Pouw Kraan TC, Vandooren B, Thurlings RM et al (2008) B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J Immunol 181(1):785–794

    Article  CAS  Google Scholar 

  17. Karmakar U, Vermeren S (2021) Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology 164(4):689–700

    Article  CAS  Google Scholar 

  18. Liewen C, Krenn VT, Dieckmann R, Bause L, Liebisch M, Niemeier A et al (2020) Diagnostic value of the CD 15 focus score in two-stage revision arthroplasty of periprosthetic joint infections : high specificity in diagnosing infect eradication. Z Rheumatol. https://doi.org/10.1007/s00393-020-00941-w

    Article  PubMed  Google Scholar 

  19. Sun B, Sun Y, Wang J, Zhao X, Zhang S, Liu Y et al (2008) The diagnostic value of SYT-SSX detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) for synovial sarcoma: a review and prospective study of 255 cases. Cancer Sci 99(7):1355–1361

    Article  CAS  Google Scholar 

  20. Feng G, Han W, Shi J, **a R, Xu J (2021) Analysis of the application of a gene chip method for detecting mycobacterium tuberculosis drug resistance in clinical specimens: a retrospective study. Sci Rep 11(1):17951

    Article  CAS  Google Scholar 

  21. Wang AA, Linson EA (2020) Septic arthritis in a previously healthy man with pan-negative infectious and rheumatologic work-up. BMJ Case Rep 13(2):e231823. https://doi.org/10.1136/bcr-2019-231823

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sebastian S, Malhotra R, Pande A, Gautam D, Xess I, Dhawan B (2018) Staged reimplantation of a total hip prosthesis after co-infection with Candida tropicalis and staphylococcus haemolyticus: a case report. Mycopathologia 183(3):579–584

    Article  CAS  Google Scholar 

  23. Kriegsmann J, Arens N, Altmann C, Kriegsmann M, Casadonte R, Otto M (2014) Molecular pathological diagnostics of infections in orthopedic pathology. Pathologe 35(2):225–231

    Article  Google Scholar 

  24. Indelli PF, Ghirardelli S, Violante B, Amanatullah DF (2021) Next generation sequencing for pathogen detection in periprosthetic joint infections. EFORT Open Rev 6(4):236–244

    Article  Google Scholar 

  25. Xu L, **e X, Shi X, Zhang P, Liu A, Wang J et al (2021) Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 21(5):353

    Article  CAS  Google Scholar 

  26. Dudics S, Venkatesha SH, Moudgil KD (2018) The micro-RNA expression profiles of autoimmune arthritis reveal novel biomarkers of the disease and therapeutic response. Int J Mol Sci 19(8):2293. https://doi.org/10.3390/ijms19082293

    Article  CAS  PubMed Central  Google Scholar 

  27. Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C (2021) Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol 12:686155

    Article  CAS  Google Scholar 

  28. Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A et al (2021) The emerging role of non-coding RNas in osteoarthritis. Front Immunol 12:773171

    Article  CAS  Google Scholar 

  29. Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8(2):e53823

    Article  CAS  Google Scholar 

  30. Kriegsmann M, Seeley EH, Schwarting A, Kriegsmann J, Otto M, Thabe H et al (2012) MALDI MS imaging as a powerful tool for investigating synovial tissue. Scand J Rheumatol 41(4):305–309

    Article  CAS  Google Scholar 

  31. Puentes-Osorio Y, Amariles P, Calleja MA, Merino V, Diaz-Coronado JC, Taborda D (2021) Potential clinical biomarkers in rheumatoid arthritis with an omic approach. Auto Immun Highlights 12(1):9

    Article  Google Scholar 

  32. Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, Lehne BC et al (2022) Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat Genet 54(1):18–29. https://doi.org/10.1038/s41588-021-00969-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kriegsmann.

Ethics declarations

Interessenkonflikt

p. J. Kriegsmann, R. Casadonte und K. Kriegsmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. Lobenhoffer, Hannover

J. Kriegsmann, Trier

W. Hackl, Innsbruck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriegsmann, J., Casadonte, R. & Kriegsmann, K. Allgemeiner Aufbau und histologische Pathophysiologie der Tunica synovialis. Arthroskopie 35, 160–165 (2022). https://doi.org/10.1007/s00142-022-00527-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-022-00527-5

Schlüsselwörter

Keywords

Navigation