Log in

Knochen als Rückzugsort für „dormant cells“

Bone as a niche for dormant cells

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Die prognostische Relevanz isolierter Tumorzellen im Knochenmark ist bei Brustkrebspatientinnen sowohl zum Zeitpunkt der Diagnosestellung als auch im rezidivfreien Intervall durch zahlreiche Studien belegt. Neuere Untersuchungen belegen, dass auch das Auftreten zirkulierender Tumorzellen im Blut mit einem erhöhten Rezidivrisiko und einem verkürzten Überleben nach einer Bruskrebserkrankung assoziiert ist. Isolierte Tumorzellen sind auch viele Jahre nach Erstdiagnose nachweisbar. In der Umgebung des Knochenmarks verharren sie über lange Zeit im Ruhezustand, können dann aber Ausgangspunkt von Rezidiven werden. Sowohl die Ruhephase als auch die Reaktivierung werden durch ein komplexes Zusammenspiel der Tumorzellen mit den Zellen des umgebenden Gewebes reguliert, die eine schützende Nische für die Tumorzelle bilden können. Ein besseres Verständnis dieses Zusammenspiels kann die Grundlage für zukünftige effektive Therapieansätze bilden, die gleichzeitig an der Tumorzelle und ihrer Umgebung ansetzen. Labortechnische Verfahren ermöglichen zudem eine Phänotypisierung der isolierten Tumorzellen, sodass sie als direkter Angriffspunkt für moderne zielgerichtete Substanzen genutzt werden können. Laufende Studien (DETECT III, TREAT CTC) untersuchen derzeit individualisierte Therapieansätze gegen zirkulierende Tumorzellen im Blut.

Abstract

Numerous studies have shown the prognostic relevance of isolated tumor cells in the bone marrow of breast cancer patients, both at primary diagnosis and during recurrence-free follow-up. Recent publications also suggest that circulating tumor cells in peripheral blood are associated with an increased risk of recurrence and shorter survival. These dormant cells can be detected in the bone marrow many years after the primary diagnosis, and can be the source of late metastases. Both the dormancy and the reactivation of these cells are regulated by a complex interaction between the tumor cells and the surrounding tissue, which forms a protecting premetastatic niche for the tumor cell. A better understanding of these interactions can be the basis for future treatment approaches, combining therapies directed against both the tumor cell and the microenvironment. Additionally, phenoty** of the isolated tumor cells can disclose tumor cell characteristics that can be directly tackled by modern targeted agents. Several recruiting trials (DETECT III, TREAT CTC) are underway to evaluate whether the prognosis of patients can be improved by individualized treatment approaches directed against circulating tumor cells in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. (o A) (2011) Empfehlungen zur Diagnostik, Therapie und Nachsorge des Mammakarzinoms, 13. Aufl. Tumorzentrum München, München

  2. Borgen E, Pantel K, Schlimok G et al (2006) A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytometry B Clin Cytom 70:400–409

    PubMed  CAS  Google Scholar 

  3. Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  PubMed  CAS  Google Scholar 

  4. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  PubMed  CAS  Google Scholar 

  5. Davies C, Pan H, Godwin J et al (2012) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stop** at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 10-6736

  6. Diel IJ, Kaufmann M, Costa SD et al (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88:1652–1658

    Article  PubMed  CAS  Google Scholar 

  7. Espinosa I, Jose CM, Catasus L et al (2010) Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol 34:1708–1714

    PubMed  Google Scholar 

  8. Fehm T, Braun S, Muller V et al (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107:885–892

    Article  PubMed  Google Scholar 

  9. Gebauer G, Fehm T, Merkle E et al (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 19:3669–3674

    PubMed  CAS  Google Scholar 

  10. Gerber B, Krause A, Muller H et al (2001) Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19:960–971

    PubMed  CAS  Google Scholar 

  11. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  12. Hayes DF, Cristofanilli M, Budd GT et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12:4218–4224

    Article  PubMed  CAS  Google Scholar 

  13. Holleczek B, Arndt V, Stegmaier C, Brenner H (2011) Trends in breast cancer survival in Germany from 1976 to 2008 – a period analysis by age and stage. Cancer Epidemiol 35:399–406

    Article  PubMed  Google Scholar 

  14. Janni W, Vogl FD, Wiedswang G et al (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse – a European pooled analysis. Clin Cancer Res 17:2967–2976

    Article  PubMed  Google Scholar 

  15. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  16. Klein CA, Blankenstein TJF, Schmidt KO et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689

    Article  PubMed  CAS  Google Scholar 

  17. Lim PK, Bliss SA, Patel SA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    Article  PubMed  CAS  Google Scholar 

  18. Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695

    Article  PubMed  Google Scholar 

  19. Oskarsson T, Acharyya S, Zhang XH et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  PubMed  CAS  Google Scholar 

  20. Pachmann K, Camara O, Kavallaris A et al (2008) Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 26:1208–1215

    Article  PubMed  Google Scholar 

  21. Pantel K, Muller V, Auer M et al (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9:6326–6334

    PubMed  CAS  Google Scholar 

  22. Patel SA, Dave MA, Murthy RG et al (2011) Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev 5:93–102

    Article  PubMed  Google Scholar 

  23. Pierga JY, Bidard FC, Mathiot C et al (2008) Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 14:7004–7010

    Article  PubMed  CAS  Google Scholar 

  24. Rack B, Schindlbeck C, Andergassen U et al (2010) Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: the SUCCESS trial. J Clin Oncol 28(15) (Abstract)

  25. Reddy BY, Lim PK, Silverio K et al (2012) The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer 2012:721659. doi:10.1155/2012/721659 (Epub; 2012 Feb 6.:721659)

    PubMed  Google Scholar 

  26. Rice J (2012) Metastasis: the rude awakening. Nature 485:55–57

    Article  Google Scholar 

  27. Wiedswang G, Borgen E, Karesen R et al (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21:3469–3478

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rack, B., Müller, V., Fehm, T. et al. Knochen als Rückzugsort für „dormant cells“. Gynäkologe 46, 250–254 (2013). https://doi.org/10.1007/s00129-012-3090-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-012-3090-x

Schlüsselwörter

Keywords

Navigation