Log in

Biliary Fish Proteomics Applied to Environmental Contamination Assessments: A Case Study in Southeastern Brazil

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Fish bile has been applied as a biomarker for environmental contamination for several decades, and several pollutants are known to be excreted in this matrix. With the advent of the proteomic field, however, the discovery of protein biomarkers of response to pollutants has become the highlight, and fish bile shows very high potential in this regard. A proteomic case study carried out in Southeastern Brazil with mullet bile indicates the importance of assessing bile colour, as different feeding statuses lead to differential proteomic profiles as observed by 2D SDS-PAGE analyses. In addition, several heat-stable proteins displaying a differential gel profile were also observed in tilapia bile when compared a contaminated and reference site. Therefore, the bile proteome displays the potential to offer a more sensitive and informative method to analyse the presence and effects of contaminants in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aas E et al (2000) Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers 5:9–23

    Article  CAS  Google Scholar 

  • Abd-Allah GA et al (1999) A comparative evaluation of aflatoxin B-1 genotoxicity in fish models using the Comet assay. Mutat Res 446:181–188

    Article  CAS  Google Scholar 

  • Aldmen G, Holmgren S (1987) Control of gallbladder motility in the rainbow trout, Salmo gairdneri. Fish Physiol Biochem 4:143–155

    Article  Google Scholar 

  • Andreasson M, Dave G (1995) Toxicity of Bile from fish exposed to pentachlorophenol-spiked sediment. Mar Environ Res 39:335–339

    Article  CAS  Google Scholar 

  • Baldisserotto B et al (2004) Ionic levels of the gallbladder bile of some teleosts from the Rio Negro, Amazon. J Fish Biol 65:287–292

    Article  CAS  Google Scholar 

  • Beyer J et al (2010) Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30:224–244

    Article  CAS  Google Scholar 

  • Bunton TE, Frazier JM (1994) Extrahepatic tissue copper concentrations in white perch with hepatic copper storage. J Fish Biol 45:627–640

    Article  CAS  Google Scholar 

  • Call DJ et al (1983) Toxicity, bioconcentration and metabolism of the herbicide propanil in freshwater fish. Arch Environ Contam Toxicol 12:175–182

    Article  CAS  Google Scholar 

  • Collier TK, Varanasi U (1991) Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in english sole (Parophrys-Vetulus) exposed to environmental contaminants. Arch Environ Contamin Toxicol 20:462–473

    Article  CAS  Google Scholar 

  • Diamond JM (1963) The reabsorptive function of the gall-bladder. J Physiol 161:442–473

    Article  Google Scholar 

  • Dijkstra M et al (1996) Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sci 59:1237–1246

    Article  CAS  Google Scholar 

  • Fange R, Grove D (1979) Digestion. In: Hoar WS et al (eds) Fish physiology. Bioenergetics and growth. Academic Press, New York, pp 161–260

    Chapter  Google Scholar 

  • Farid SG et al (2011) Shotgun proteomics of human bile in hilar cholangiocarcinoma. Proteomics 11:2134–2138

    Article  CAS  Google Scholar 

  • Farina A et al (2009) Proteomic analysis of human bile from malignant biliary stenosis induced by pancreatic cancer. J Proteome Res 8:159–169

    Article  CAS  Google Scholar 

  • Fuentes-Rios D et al (2005) EROD activity and biliary fluorescence in Schroederichthys chilensis (Guichenot 1848): biomarkers of PAH exposure in coastal environments of the South Pacific Ocean. Chemosphere 61:192–199

    Article  CAS  Google Scholar 

  • Galgani F et al (1992) Monitoring of pollutant biochemical effects on marine organisms of the french coasts. Oceanol Acta 15:355–364

    CAS  Google Scholar 

  • Grosell MH et al (1997) Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 38:257–276

    Article  CAS  Google Scholar 

  • Grosell MH et al (1998) Renal Cu and Na excretion and hepatic Cu metabolism in both Cu acclimated and non acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 40:275–291

    Article  CAS  Google Scholar 

  • Grosell M et al (2000) Hepatic versus gallbladder bile composition: in vivo transport physiology of the gallbladder in rainbow trout. Am J Physiol 278:R1674–R1684

    CAS  Google Scholar 

  • Gupta N et al (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285–296

    Article  CAS  Google Scholar 

  • Hauser-Davis RA et al (2012a) A novel report of metallothioneins in fish bile: SDS-PAGE analysis, spectrophotometry quantification and metal speciation characterization by liquid chromatography coupled to ICP-MS. Aquat Toxicol 116:54–60

    Article  Google Scholar 

  • Haslewood GAD (1978) The biological importance of bile salts. North- Holland: Amsterdam, New York and Oxford, pp 206

  • Hauser-Davis RA et al (2012b) First-time report of metalloproteinases in fish bile and their potential as bioindicators regarding environmental contamination. Aquat Toxicol 110–111:99–106

    Article  Google Scholar 

  • He C et al (1999) Electrophoretic analysis of proteins in bile. Anal Chim Acta 383:185–203

    Article  CAS  Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112

    Article  CAS  Google Scholar 

  • Klaassen CD, Watkins JB (1984) Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 36:1–67

    CAS  Google Scholar 

  • Krahn MM et al (1984) Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14:633–646

    Article  CAS  Google Scholar 

  • Krahn MM et al (1986) Associations between metabolites of aromatic-compounds in bile and the occurrence of hepatic-lesions in english sole (Parophrys-Vetulus) from Puget Sound, Washington. Arch Environ Contam Toxicol 15:61–67

    Article  CAS  Google Scholar 

  • Morozov DN, Vysotskaya RU (2007) Comparative study of bile acid composition of bile of the European vendace Coregonus albula L. and the European whitefish Coregonus lavaretus L. under conditions of technogenic water reservoir pollution. J Evol Biochem Physiol 43:490–494

    Article  CAS  Google Scholar 

  • Neves RL et al (2007) Polycyclic aromatic hydrocarbons (PAHs) in fish bile (Mugil liza) as biomarkers for environmental monitoring in oil contaminated areas. Mar Pollut Bull 54:1818–1824

    Article  CAS  Google Scholar 

  • Norris DO et al (2000) Some aspects of hepatic function in feral brown trout, Salmo trutta, living in metal contaminated water. Comp Biochem Physiol C 127:71–78

    Article  CAS  Google Scholar 

  • Pampanin DM et al (2014) Study of the bile proteome of Atlantic cod (Gadus morhua): multi-biological markers of exposure to polycyclic aromatic hydrocarbons. Mar Environ Res 101:161–168

    Article  CAS  Google Scholar 

  • Perin G, Fabris R, Manente S, Wagener AR, Hamacher C, Scotto S (1997) A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means. Water Res 31(12):3017–3028

    Article  Google Scholar 

  • Peterson GL (1979) Review of the foline phenol protein quantitation method of lowry, rosebrough Farr and Randall. Anal Biochem 100:201–220

    Article  CAS  Google Scholar 

  • Richardson DM et al (2004) Effects of feeding status on biliary PAH metabolite and biliverdin concentrations in plaice (Pleuronectes platessa). Environ Toxicol Pharmacol 17:79–85

    Article  CAS  Google Scholar 

  • Shepard JL et al (2000) Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress. Mar Environ Res 50:337–340

    Article  CAS  Google Scholar 

  • Vanderoost R et al (1994) Bioaccumulation, biotransformation and dna-binding of pahs in feral Eel (Anguilla-Anguilla) exposed to polluted sediments - a field survey. Environ Toxicol Chem 13:859–870

    Article  CAS  Google Scholar 

  • Varanasi U, Gmur DJ (1981) Hydrocarbons and metabolites in english sole (Parophrys-Vetulus) exposed simultaneously to [H-3]Benzo[a]Pyrene and [Naphthalene-C-14 in oil-contaminated sediment. Aquat Toxicol 1:49–67

    Article  CAS  Google Scholar 

  • Varanasi U et al (1989) Biotranformation and disposition of PAHs in fish. In: Varanasi U (ed) Metabolism of PAHs in the aquatic environment. CRC Press, Boca Raton, pp 93–150

    Google Scholar 

  • Yamada T et al (2010) Overexpression of MMP-13 gene in colorectal cancer with liver metastasis. Anticancer Res 30:2693–2699

    CAS  Google Scholar 

  • Zhang DW et al (2009) Transfer, distribution and bioaccumu- lation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci Total Environ 407:2191–2199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ann Hauser-Davis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. Fish were bought from local fishers at the local marketplace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauser-Davis, R.A., Ziolli, R.L. Biliary Fish Proteomics Applied to Environmental Contamination Assessments: A Case Study in Southeastern Brazil. Bull Environ Contam Toxicol 107, 100–105 (2021). https://doi.org/10.1007/s00128-021-03104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03104-y

Keywords

Navigation