Log in

Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other map** methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA.

Abstract

Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic map** methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All raw data generated of 36 samples used in this study were deposited in Bioproject in National Genomics Data Center (NGDC) database with the accession number PRJCA017883 subPRO026577.

References

  • Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S (2014) Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell 26(3):1036–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aderinola TA, Fagbemi TN, Enujiugha VN, Alashi AM, Aluko RE (2018) In vitro antihypertensive and antioxidative properties of trypsin-derived Moringa oleifera seed globulin hydrolyzate and its membrane fractions. Food Sci Nutr 7(1):132–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson AC, Stangherlin S, Pimentel KN, Weadge JT, Clarke AJ (2022) The SGNH hydrolase family: a template for carbohydrate diversity. Glycobiology 32(10):826–848

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346

    PubMed  PubMed Central  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  PubMed  CAS  Google Scholar 

  • Bekturova A, Oshanova D, Tiwari P, Nurbekova Z, Kurmanbayeva A, Soltabayeva A, Yarmolinsky D, Srivastava S, Turecková V, Strnad M, Sagi M (2021) Adenosine 5’ phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis. J Exp Bot 72(18):6447–6466

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Kim SC, Li J, Zhou Y, Wang X (2020) Transcriptional regulation of lipid catabolism during seedling establishment. Mol Plant 13(7):984–1000

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Dai Y, Cui SJ, Ma LG (2008) Histone H2B monoubiquitination in the chromatin of flowering locus c regulates flowering time in Arabidopsis. Plant Cell 20:2586–2602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cascales-Miñana B, Muñoz-Bertomeu J, Flores-Tornero M, Anoman AD, Pertusa J, Alaiz M, Osorio S, Fernie AR, Segura J, Ros R (2013) The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis. Plant Cell 25(6):2084–2101

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F (2019) Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4(4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biol 19(1):231

    Article  PubMed  PubMed Central  Google Scholar 

  • Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF 3rd, Hanson AD, Shachar-Hill Y (2008) Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell 20(7):1818–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collin A, Daszkowska-Golec A, Szarejko I (2021) Updates on the role of abscisic acid insensitive 5 (ABI5) and abscisic acid-responsive element binding factors (ABFs) in ABA signaling in different developmental stages in plants. Cells 10(8):1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci U S A 99(7):4736–4741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do TH, Martinoia E, Lee Y (2018) Functions of ABC transporters in plant growth and development. Curr Opin Plant Biol 41:32–38

    Article  PubMed  CAS  Google Scholar 

  • Dolui AK, Vijayaraj P (2020) Functional omics identifies serine hydrolases that mobilize storage lipids during rice seed germination. Plant Physiol 184(2):693–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15(5):1212–1226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Müller K, Kermode AR, Finch-Savage WE (2015) Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant J 81(3):413–425

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE (2020) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol 225(5):2035–2047

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832

    Article  PubMed  Google Scholar 

  • Gao X, Ren F, Lu YT (2006) The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation. Plant Cell Physiol 47(9):1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Gou M, Yang X, Zhao Y, Ran X, Song Y, Liu CJ (2019) Cytochrome b5 is an obligate electron shuttle protein for syringyl lignin biosynthesis in Arabidopsis. Plant Cell 31(6):1344–1366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu TY, Qi ZA, Chen SY, Yan J, Fang ZJ, Wang JM, Gong JM (2023) Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiol 191(1):515–527

    Article  PubMed  CAS  Google Scholar 

  • Guan B, Jiang YT, Lin DL, Lin WH, Xue HW (2022) Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins. Autophagy 18(11):2656–2670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo L, Yu Y, Law JA, Zhang X (2010) Set domain group2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci U S A 107(43):18557–18562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heras B, Drøbak BK (2002) PARF-1: an Arabidopsis thaliana FYVE-domain protein displaying a novel eukaryotic domain structure and phosphoinositide affinity. J Exp Bot 53(368):565–567

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Hirano T (2002) Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA. EMBO J 21(21):5733–5744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang AHC (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol 176(3):1894–1918

    Article  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B, Tao Y (2009) High-throughput genoty** by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang T, Bo QuB, Li HP, Zuo DY, Zhao ZX, Liao YC (2012) A maize viviparous 1 gene increases seed dormancy and preharvest sprouting tolerance in transgenic wheat. J Cereal Sci 55(2):166–173

    Article  Google Scholar 

  • Jabrin S, Ravanel S, Gambonnet B, Douce R, Rébeillé F (2003) One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol 131(3):1431–1439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Fang Y, Yan D, Liu ST, Wei J, Guo FL, Wu XT, Cao H, Yin CB, Lu F, Gao LF, Liu YX (2022) Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat. Theor Appl Genet 135(9):3265–3276

    Article  PubMed  CAS  Google Scholar 

  • Kaewthai N, Gendre D, Eklöf JM, Ibatullin FM, Ezcurra I, Bhalerao RP, Brumer H (2013) Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant Physiol 161(1):440–454

    Article  PubMed  CAS  Google Scholar 

  • Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E (2022) Diacylglycerol kinase 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiol 190(3):1978–1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kam**a HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113

    Article  PubMed  Google Scholar 

  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157(2):866–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12(4):656–664

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh C-H, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55(3):455–466

    Article  PubMed  CAS  Google Scholar 

  • Kong MS, Qiao Q, Ma XL, Tao YS, Maharjan RP, Zhen WC (2020) Isolation and functional analysis of the ZmARM4 locus in a novel maize (Zea mays) grain-filling mutant. Plant Breeding 139(3):217–226

    Article  CAS  Google Scholar 

  • Kong Y, Pei S, Wang Y, Xu Y, Wang X, Zhou G, Hu R (2021) Homeodomain glabrous2 regulates cellulose biosynthesis in seed coat mucilage by activating cellulose synthase5. Plant Physiol 185(1):77–93

    Article  PubMed  CAS  Google Scholar 

  • Koo HJ, Park SM, Kim KP, Suh MC, Lee MO, Lee SK, **nli X, Hong CB (2015) Small heat shock proteins can release light dependence of tobacco seed during germination. Plant Physiol 167(3):1030–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar MN, Bau YC, Longkumer T, Verslues PE (2019) Low water potential and At14a-Like1 (AFL1) effects on endocytosis and actin filament organization. Plant Physiol 179(4):1594–1607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai CP, Huang LM, Chen LO, Chan MT, Shaw JF (2017) Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Mol Biol 95(1–2):181–197

    Article  PubMed  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  • Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16(5):646–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J (2017) Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett 393:40–51

    Article  PubMed  CAS  Google Scholar 

  • Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y (2021) Functions of PPR proteins in plant growth and development. Int J Mol Sci 22(20):11274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68(2):530–540

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280(5371):1943–1945

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007a) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315(5819):1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ (2007b) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WC, Song RF, Zheng SQ, Li TT, Zhang BL, Gao X, Lu YT (2022) Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol Plant 15(6):973–990

    Article  PubMed  Google Scholar 

  • Lubkowitz M (2011) The oligopeptide transporters: a small gene family with a diverse group of substrates and functions? Mol Plant 4(3):407–415

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Cao YY, Wang LF, Li JJ, Wang H, Fan YP, Li HY (2020) Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin 46(3):385–394

    Article  Google Scholar 

  • Martinez SA, Godoy J, Huang M, Zhang Z, Carter AH, Garland Campbell KA, Steber CM (2018) Genome-wide association map** for tolerance to preharvest sprouting and low falling numbers in wheat. Front Plant Sci 9:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164(4):1759–1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y (2023) Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 35(3):1110–1133

    Article  PubMed  Google Scholar 

  • Merilo E, Jalakas P, Laanemets K, Mohammadi O, Hõrak H, Kollist H, Brosché M (2015) Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8(9):1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP (2019) Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC Plant Biol 19(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagel M, Alqudah AM, Bailly M, Rajjou L, Pistrick S, Matzig G, Börner A, Kranner I (2019) Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant Cell Environ 42(4):1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Bartsch M, **ang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJJ (2012) The time required for dormancy release in Arabidopsis is determined by delay of germination1 protein levels in freshly harvested seeds. Plant Cell 24(7):2826–2838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu L, Du C, Wang W, Zhang M, Wang W, Liu H, Zhang J, Wu X (2022) Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation. BMC Plant Biol 22(1):359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16(7):1912–1924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park C, Lim CW, Baek W, Lee SC (2015) RING Type E3 Ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response. Plant Cell Physiol 56(9):1808–1819

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639

    Article  PubMed  CAS  Google Scholar 

  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490

    Article  PubMed  CAS  Google Scholar 

  • Rao V, Petla BP, Verma P, Salvi P, Kamble NU, Ghosh S, Kaur H, Saxena SC, Majee M (2018) Arabidopsis SKP1-like protein13 (ASK13) positively regulates seed germination and seedling growth under abiotic stress. J Exp Bot 69(16):3899–3915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahi C, Kominek J, Ziegelhoffer T, Yu HY, Baranowski M, Marszalek J, Craig EA (2013) Sequential duplications of an ancient member of the DnaJ-family expanded the functional chaperone network in the eukaryotic cytosol. Mol Biol Evol 30(5):985–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK (2015) Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell 57(5):887–900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samtani H, Sharma A, Khurana P (2022) Overexpression of HVA1 enhances drought and heat stress tolerance in triticum aestivum doubled haploid plants. Cells 11(5):912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG, Fincher GB, Matsumoto T, Takeda K, Komatsuda T (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semrad K, Green R, Schroeder R (2004) RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA 10(12):1855–1860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahpiri A, Svensson B, Finnie C (2008) The NADPH-dependent thioredoxin reductase/thioredoxin system in germinating barley seeds: gene expression, protein profiles, and interactions between isoforms of thioredoxin h and thioredoxin reductase. Plant Physiol 146(2):789–799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao Q, Liu X, Su T, Ma C, Wang P (2019) New insights into the role of seed oil body proteins in metabolism and plant development. Front Plant Sci 10:1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145(4):1471–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Shi J, Liang W, Zhang D (2021) Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet 134(11):3553–3562

    Article  PubMed  CAS  Google Scholar 

  • Shim JS, Park SH, Lee DK, Kim YS, Park SC, Redillas MC, Seo JS, Kim JK (2021) The rice Glycine-rich protein 3 confers drought tolerance by regulating mRNA stability of ROS scavenging-related genes. Rice (n y) 14(1):31

    Article  PubMed  CAS  Google Scholar 

  • Shu K, Liu XD, **e Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9(1):34–45

    Article  PubMed  CAS  Google Scholar 

  • Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25(4):320–328

    Article  PubMed  CAS  Google Scholar 

  • Simsek S, Ohm JB, Lu H, Rugg M, Berzonsky W, Alamri MS, Mergoum M (2014) Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food Agric 94(2):205–212

    Article  PubMed  CAS  Google Scholar 

  • Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT (2016) Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538(7623):123–126

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Wu Z, Wang Y, Yang J, Wei G, Chou M (2019) Identification of phytocyanin gene family in legume plants and their involvement in Nodulation of Medicago truncatula. Plant Cell Physiol 60(4):900–915

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, Cocciolone S, McCarty DR (2001) Maize VP1 complements Arabidopsis ABI3 and confers a novel ABA/auxin interaction in roots. Plant J 28(4):409–418

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Settles AM, Tseung CW, Li QB, Latshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J 45(2):264–274

    Article  PubMed  CAS  Google Scholar 

  • Swain SM, Tseng TS, Olszewski NE (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol 126(3):1174–1185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun JQ, Chen KM (2021) Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot 72(8):2857–2876

    Article  PubMed  CAS  Google Scholar 

  • Vishnu Varthini L, Selvaraju K, Srinivasan M, Nachiappan V (2015) ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 589(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wang L, Liu Z, Li Y, Liu Q, Liu B (2016) Phylogeny, seed trait, and ecological correlates of seed germination at the community level in a degraded sandy grassland. Front Plant Sci 7:1532

    PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Lei JJ, Liang CL, Zhang ZK, Chang PP, Zhang ZY, He HJ (2019) Progress on the study of translationally controlled tumor protein in plants. J Nuc Agricul Sci 33(4):696–704

    Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20(9):2484–2496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waters MT, Scaffidi A, Flematti GR, Smith SM (2013) The origins and mechanisms of karrikin signalling. Curr Opin Plant Biol 16(5):667–673

    Article  PubMed  CAS  Google Scholar 

  • Wolven AK, Belmont LD, Mahoney NM, Almo SC, Drubin DG (2000) In vivo importance of actin nucleotide exchange catalyzed by profilin. J Cell Biol 150(4):895–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CT, Bradford KJ (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133(1):263–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **ang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe WJ (2014) Reduced dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. Plant Cell 26(11):4362–4375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R (2003) Measuring explained variation in linear mixed effects models. Stat Med 22(22):3527–3541

    Article  PubMed  Google Scholar 

  • Yang XY, Chen ZW, Xu T, Qu Z, Pan XD, Qin XH, Ren DT, Liu GQ (2011) Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. Plant Cell 23(3):1093–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zhu L, Wang H, Jiang M, **ao C, Hu X, Vanneste S, Dong J, Le J (2019) A conserved but plant-specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division. Proc Natl Acad Sci U S A 116(36):18126–18131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association map** that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhan JJ, Wang F, ** and candidate gene prediction of a major QTL for kernel number perear in maize. Mol Breeding 38:27

    Article  Google Scholar 

  • Zhang Y, Hu Y, Guan Z, Liu P, He Y, Zou C, Li P, Gao S, Peng H, Yang C, Pan G, Shen Y, Ma L (2020) Combined linkage map** and association analysis reveals genetic control of maize kernel moisture content. Physiol Plant 170(4):508–518

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Cheng W, Yuan X, Wang J, Cheng T, Zhang Q (2022) Integrated transcriptome and small RNA sequencing in revealing miRNA-mediated regulatory network of floral bud break in Prunus mume. Front Plant Sci 13:931454

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Liu RX, Li CP, ** for grain yield associated traits using ye478 introgression lines in maize. Sci Agric Sin 44(17):3508–3519

    Google Scholar 

  • Zhao ML, Ni J, Chen MS, Xu ZF (2019) Ectopic expression of jatropha curcas Trehalose-6-Phosphate Phosphatase j causes late-flowering and heterostylous phenotypes in Arabidopsis but not in Jatropha. Int J Mol Sci 20(9):2165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Jan A, Ohama N, Kidokoro S, Soma F, Koizumi S, Mogami J, Todaka D, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2021) Cytosolic HSC70s repress heat stress tolerance and enhance seed germination under salt stress conditions. Plant Cell Environ 44(6):1788–1801

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193(3):605–616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-6), Natural Science Foundation of Heibei Province of China (C2021204078), and Hebei Key R&D Plan “Special project on scientific and technological innovation of modern seed industry” (21326328D). We thank Prof. Jianbing Yan of Huazhong Agricultural University for providing seeds of the 368 natural maize populations.

Funding

This study was funded by the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-6), Natural Science Foundation of Heibei Province of China (C2021204078), and Hebei Key R&D Plan “Special project on scientific and technological innovation of modern seed industry” (21326328D).

Author information

Authors and Affiliations

Authors

Contributions

YT and HD designed the experiment. XM, AT, LF, YH, and DZ collected the phenotypes and performed the data analysis. YT and HD wrote the manuscript. XM, AT, LF, TZ, YH, and DZ edited the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Huijun Duan or Yongsheng Tao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Human and animal rights

This study does not include human or animal subjects.

Additional information

Communicated by Thomas Lubberstedt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 951 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Feng, L., Tao, A. et al. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. Theor Appl Genet 136, 259 (2023). https://doi.org/10.1007/s00122-023-04495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04495-8

Navigation