Log in

Allelic variations of ClACO gene improve nitrogen uptake via ethylene-mediated root architecture in watermelon

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient 15N uptake in watermelon.

Abstract

Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity. Whereas previous researches on nitrogen absorption process are mainly focused on a few model plants or crops. To date, the causal genes that determine the efficient nitrogen uptake of watermelon have not been mapped and remains largely unknown. Here, we fine-mapped the 1-aminocyclopropane-1-carboxylate oxidase (ClACO) gene associated with nitrogen uptake efficiency in watermelon via bulked segregant analysis (BSA). The variations in the ClACO gene led to the changes of gene expression levels between two watermelon accessions with different nitrogen uptake efficiencies. Intriguingly, in terms of the transcript abundance of ClACO, it was concomitant with significant differences in ethylene evolutions in roots and root architectures between the two accessions and among the different genotypic offsprings of the recombinant BC2F1(ZJU132)-18. These findings suggest that ethylene as a negative regulator altered nitrogen uptake efficiency in watermelon by controlling root development. In conclusion, our current study will provide valuable target gene for precise breeding of ‘green’ watermelon varieties with high-nitrogen uptake efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RNA-seq data have been deposited in NCBI Bioproject PRJNA960910. Other data generated in this study are included in this article and its supplementary information files.

References

  • Brooks MD, Cirrone J, Pasquino AV, Alvarez JM, Swift J, Mittal S, Juang C-L, Varala K, Gutierrez RA, Krouk G, Shasha D, Coruzzi GM (2019) Network walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat Commun 10:1–13

    CAS  Google Scholar 

  • Brown J, Pirrung M, McCue LA (2017) FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33:3137–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Xu P, Zhao P, Liu R, Yu L, **ang C (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:1–13

    Google Scholar 

  • Cai L, Liu J, Wang S, Gong Z, Yang S, Xu F, Hu Z, Zhang M, Yang J (2023) The coiled-coil protein gene WPRb confers recessive resistance to Cucumber green mottle mosaic virus. Plant Physiol 191:369–381

    CAS  PubMed  Google Scholar 

  • de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    PubMed  Google Scholar 

  • De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, Wang JY, Meuli N, Vanneste S, Friml J, Hilson P, Juergens G, Ingram GC, Inze D, Benfey PN, Beeckman T (2008) Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594–597

    PubMed  Google Scholar 

  • Dou J, Yang H, Sun D, Yang S, Sun S, Zhao S, Lu X, Zhu H, Liu D, Ma C, Liu W, Yang L (2022) The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. Theor Appl Genet 135:65–79

    CAS  PubMed  Google Scholar 

  • Forde BG (2014) Nitrogen signalling pathways sha** root system architecture: an update. Curr Opin Plant Biol 21:30–36

    CAS  PubMed  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    CAS  PubMed  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E, Raya-Gonzalez J, Mendez-Bravo A, Macias-Rodriguez L, Francisco Ruiz-Herrera L, Lopez-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512

    CAS  PubMed  Google Scholar 

  • Giehl RFH, Gruber BD, von Wiren N (2014) Its time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot 65:769–778

    CAS  PubMed  Google Scholar 

  • Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22:453–470

    CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B-K, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, **a Y, Zhao X, Zheng Z, **ng M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet 45:51

    CAS  PubMed  Google Scholar 

  • Guo SG, Zhao SJ, Sun HH, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu XQ, Zhang HY, Shang JL, Gong GY, Wen CL, He N, Tian SW, Li MY, Liu JP, Wang YP, Zhu YC, Jarrets R, Levi A, Zhang XP, Huang SW, Fei ZJ, Liu WG, Xu Y (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genet 51:1616–1623

    CAS  PubMed  Google Scholar 

  • Han X, Wu K, Fu X, Liu Q (2020) Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. aBIOTECH 1:255–275

    PubMed  PubMed Central  Google Scholar 

  • He S, Zhao Y, Liu C, Li Z, Zhang Z, Li B, Tang X (2022) An exploration into the relationship between mineral elements (nitrogen and phosphorus) and nutritional quality in soil-watermelon (Citrullus lanatus) system. J Anal Sci Technol 13(1):1–11

    Google Scholar 

  • Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genet 47:834–838

    CAS  PubMed  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiol Biochem 73:128–138

    CAS  PubMed  Google Scholar 

  • Jia Z, Giehl RFH, von Wiren N (2022) Nutrient-hormone relations: driving root plasticity in plants. Mol Plant 15:86–103

    CAS  PubMed  Google Scholar 

  • Ju X, **ng G, Chen X, Zhang S, Zhang L, Liu X, Cui Z, Yin B, Christie P, Zhu Z, Zhang F (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A 106:3041–3046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A-S, Chaillou S, Ferrario-Mery S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798

    CAS  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzil GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li C, Tang Z, Wei J, Qu H, **e Y, Xu G (2016) The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics 43:639–649

    CAS  PubMed  Google Scholar 

  • Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD (2018) Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560:595–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Ahmed M, Abid A, Kateta Malangisha G, Lyu X, Yang J, Zhang M (2020) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol J 18:1066–1077

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C (2021) Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590:600–605

    CAS  PubMed  Google Scholar 

  • Liu S, Gao Z, Wang X, Luan F, Dai Z, Yang Z, Zhang Q (2022) Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.). Theor Appl Genet 135:185–200

    CAS  PubMed  Google Scholar 

  • Liu S, Liu M, Cao Y, Xu Y, Liu H, Zhu Q, Zhang X, Luan F (2023) Identification of chromosome region and candidate genes for canary-yellow flesh (Cyf) locus in watermelon (Citrullus lanatus). Plant Sci 329:111594

    CAS  PubMed  Google Scholar 

  • Ma B, He S, Duan K, Yin C, Chen H, Yang C, **ong Q, Song Q, Lu X, Chen H, Zhang W, Lu T, Chen S, Zhang J (2013) Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation. Mol Plant 6:1830–1848

    CAS  PubMed  Google Scholar 

  • Ma B, Ma T, **an W, Hu B, Chu C (2022) Interplay between ethylene and nitrogen nutrition: how ethylene orchestrates nitrogen responses in plants. J Integr Plant Biol 65:399–407

    PubMed  Google Scholar 

  • Mahmoud A, Qi R, Zhao H, Yang H, Liao N, Ali A, Malangisha GK, Ma Y, Zhang K, Zhou Y, **a Y, Lyu X, Yang J, Zhang M, Hu Z (2022) An allelic variant in the ACS7 gene promotes primary root growth in watermelon. Theor Appl Genet 135:3357–3373

    CAS  PubMed  Google Scholar 

  • Mansfeld BN, Grumet R (2018) QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome

    Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    CAS  Google Scholar 

  • Nawaz MA, Chen C, Shireen F, Zheng Z, Sohail H, Afzal M, Ali MA, Bie Z, Huang Y (2018) Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC Genomics 19:456

    PubMed  PubMed Central  Google Scholar 

  • Niu YF, Chai RS, ** GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    CAS  PubMed  Google Scholar 

  • Qin H, Pandey BK, Li Y, Huang G, Wang J, Quan R, Zhou J, Zhou Y, Miao Y, Zhang D, Bennett MJ, Huang R (2022) Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. Plant Cell 34:1273–1288

    PubMed  PubMed Central  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R (2014) Strategies for improving potassium use efficiency in plants. Mol Cells 37:575–584

    PubMed  PubMed Central  Google Scholar 

  • Sun P, Tian Q, Zhao M, Dai X, Huang J, Li L, Zhang W (2007) Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol 48:1229–1235

    CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid map** of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  PubMed  Google Scholar 

  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WJ, Ye J, Yao XM, Zhao PZ, Xuan W, Tian YL, Zhang YY, Xu S, An HZ, Chen GM, Yu J, Wu W, Ge YW, Liu XL, Li J, Zhang HZ, Zhao YQ, Yang B, Jiang XZ, Peng C, Zhou C, Terzaghi W, Wang CM, Wan JM (2019) Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 10:1–11

    Google Scholar 

  • Tian Q, Sun P, Zhang W (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol 184:918–931

    CAS  PubMed  Google Scholar 

  • Vidal EA, Moyano TC, Canales J, Gutierrez RA (2014) Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J Exp Bot 65:5611–5618

    CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    PubMed  PubMed Central  Google Scholar 

  • Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Zhang S, Zhang J, Hu D, Zhang D (2023) Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiol 00:1–16

    Google Scholar 

  • Wei J, Zheng Y, Feng H, Qu H, Fan X, Yamaji N, Ma JF, Xu G (2018) OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69:1095–1107

    CAS  PubMed  Google Scholar 

  • Wei CH, Zhu CY, Yang LP, Zhao W, Ma RX, Li H, Zhang Y, Ma JX, Yang JQ, Zhang X (2019) A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. Hortic Res 6:12

    Google Scholar 

  • Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:641

    Google Scholar 

  • Wu S, Sun H, Gao L, Branham S, McGregor C, Renner SS, Xu Y, Kousik C, Wechter WP, Levi A, Fei Z (2023) A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. bioRxiv:2023.2006.2008.544282

  • Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    CAS  PubMed  Google Scholar 

  • Yang XQ, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J 40:772–782

    CAS  PubMed  Google Scholar 

  • Yang C, Lu X, Ma B, Chen S-Y, Zhang J-S (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8:495–505

    CAS  PubMed  Google Scholar 

  • Yu J, Xuan W, Tian Y, Fan L, Sun J, Tang W, Chen G, Wang B, Liu Y, Wu W, Liu X, Jiang X, Zhou C, Dai Z, Xu D, Wang C, Wan J (2020) Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J 19:167–176

    PubMed  PubMed Central  Google Scholar 

  • Yuan G, Sun D, Wang Y, An G, Li W, Si W, Liu J, Zhu Y (2022) Genome-wide identification and expression analysis of NIN-like Protein (NLP) genes reveals their potential roles in the response to nitrate signaling in watermelon. Hortic Plant J 8:602–614

    CAS  Google Scholar 

  • Zhang H, Yang Y, Sun C, Liu X, Lv L, Hu Z, Yu D, Zhang D (2020) Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean. Plant Cell Environ 43:2080–2094

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhu L, Shen C, Ji Z, Zhang H, Zhang T, Li Y, Yu J, Yang N, He Y, Tian Y, Wu K, Wu J, Harberd NP, Zhao Y, Fu X, Wang S, Li S (2021) Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell 33:566–580

    PubMed  Google Scholar 

  • Zheng D, Han X, An Y, Guo H, **a X, Yin W (2013) The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ 36:1328–1337

    CAS  PubMed  Google Scholar 

  • Zhou M, Guo S, Zhang J, Zhang H, Li C, Tang X, Ren Y, Gong G, Xu Y (2016) Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits. Acta Physiol Plant 38:1–13

    Google Scholar 

  • Zhu C, Yang N, Guo Z, Qian M, Gan L (2016) An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings. Plant Physiol Biochem 105:37–44

    CAS  PubMed  Google Scholar 

  • Zou LP, Qi DF, Sun JB, Zheng X, Peng M (2019) Expression of the cassava nitrate transporter NRT2.1 enables Arabidopsis low nitrate tolerance. J Genet 98:1–9

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Novogene for providing technical support of sequencing and Dr. **chang Zhang from Environment and Resources Experimental Teaching Center, Zhejiang University for the assistance of 15N content measurement.

Funding

This work was supported by Special Support Plan for high-level talents of Zhejiang Province (2021R51007), the Key Research Project of Ningbo Municipal Government (2021Z057) and the Earmarked Fund for China Agriculture Research System (CARS-25-17).

Author information

Authors and Affiliations

Authors

Contributions

MZ and KZ designed the project. KZ conducted most of the experiments; WG, YZ, HZ, YX and MZ performed some of the field work and measured the phenotypes. ZH, JY and YB performed some data analysis; KZ wrote the manuscript, MZ and XL revised it.

Corresponding author

Correspondence to Mingfang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Yiqun Weng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2023_4448_MOESM1_ESM.docx

Fig. S1 The shoot dry weight and root dry weight of ZJU045, ZJU132 and reciprocal crossings of F1 hybrids. Fig. S2 The Manhattan plots on chromosome 1 and chromosome 4. Fig. S3 Fine map** of the candidate gene for 15N uptake efficiency. Fig. S4 Differential gene expression value of selected genes obtained by RNA-seq and qRT-PCR in roots and leaves of watermelon seedlings grown under hydroponic conditions for two weeks. Fig. S5 Transcriptome analysis of ZJU045 and ZJU132 seedlings in roots and leaves. Fig. S6 Cluster heatmap of 22 genes in the candidate region. Fig. S7 Genoty** analysis of the SNP (M16) in the promoter of ClACO among F2 population (DOCX 1362 kb)

122_2023_4448_MOESM2_ESM.xlsx

Table S1 15N accumulation per unit time among F2 individuals. Table S2 The sequence data summary of BSA project for each pool. Table S3 Number of SNPs and Indels from two parents and their F2 bulks in watermelon. Table S4 The QTL results of 15N uptake efficiency on 99% confidence intervals using ∆All index algorithms. Table S5 The QTL results of 15N uptake efficiency on 99% confidence intervals analyzed by G’ value algorithms. Table S6 The variations between ZJU045 and ZJU132 in candidate regions of chromosome 1 and chromosome 4. Table S7 The list of KASP markers used in this study. Table S8 The genotypes of some lines selected in the F2 population. Table S9 Gene information in candidate region. Table S10 The sequence data summary of transcriptome project for each sample. Table S11 Primer information used for PCR and cloning used in this study (XLSX 62 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Gao, W., Zhou, Y. et al. Allelic variations of ClACO gene improve nitrogen uptake via ethylene-mediated root architecture in watermelon. Theor Appl Genet 136, 199 (2023). https://doi.org/10.1007/s00122-023-04448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04448-1

Navigation