Log in

BrKAO2 mutations disrupt leafy head formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The role of BrKAO2 in leafy head formation was confirmed by using two allelic Chinese cabbage mutants.

Abstract

Chinese cabbage yield and quality are determined by leafy head formation. Cloning and characterising the key genes regulating leafy head formation are essential for its varietal improvement. We used an EMS-mutagenised population of the heading type ‘FT’ Chinese cabbage line and identified two allelic non-heading mutants, i.e. nhm3-1 and nhm3-2. Genetic analysis showed that the mutant trait was controlled by a single recessive gene. MutMap and Kompetitive Allele Specific PCR genoty** revealed that BraA05g012440.3C was the candidate gene, which encodes ent-kaurenoic acid oxidase 2 in gibberellin (GA) biosynthetic pathway. It was named BrKAO2. Two non-synonymous mutations in the second BrKAO2 exon, respectively, accounted for the mutant phenotypes of nhm3-1 and nhm3-2. BrKAO2 was expressed during all leaf development stages, and there were no significant differences between the wild type and mutants in terms of BrKAO2 expression. The mutant phenotypes were restored to the wild type via exogenous GA3 application. RNA-Seq was performed on wild-type ‘FT’, nhm3-1, and nhm3-1 + GA3 rosette leaves, and several key genes involved in GA biosynthesis, signal transduction, and leafy head development were identified. These findings indicate that BrKAO2 is responsible for the leafy head formation in nhm3 mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated and analysed in this study are available upon request. Transcriptome sequencing data have been deposited in the NCBI Gene Expression Omnibus (GEO) Database under accession number GSE183651. The sequence data of MutMap have been deposited in the NCBI Sequence Read Archive (SRA) repository under accession numbers SRR15803269, SRR15828094, and SRR15829494.

References

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Fu XM, Liu JQ, Ye TT, Hou SY, Huang YQ, Yuan BF, Wu Y, Feng YQ (2012) Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC–ESI–QTOF–MS analysis. J Chromatogr B 905:67–74

    Article  CAS  Google Scholar 

  • Cheng CX, Jiao C, Singer SD, Gao M, Xu XZ, Zhou YM, Li Z, Fei ZJ, Wang YJ, Wang XP (2015) Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 16:128

  • Cheng F, Sun RF, Hou XL et al (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin Signaling in Plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott RC, Ross JJ, Smith JJ, Lester DR, Reid JB (2001) Feed-forward regulation of gibberellin deactivation in pea. J Plant Growth Regul 20:87–94

    Article  CAS  Google Scholar 

  • Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    Article  CAS  PubMed  Google Scholar 

  • Fambrini M, Mariotti L, Parlanti S, Picciarelli P, Salvini M, Ceccarelli N, Pugliesi C (2011) The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence. Plant Mol Biol 75:431–450

    Article  CAS  PubMed  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Fu XD, Richards DE, Fleck B, **e DX, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affi nity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LW, Lyu SW, Tang J, Zhou DY, Bonnema G, **ao D, Hou XL, Zhang CW (2017) Genome-wide analysis of auxin transport genes identifies the hormone responsive patterns associated with leafy head formation in Chinese cabbage. Sci Rep 7:42229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Huang SN, Qu GY, Fu W, Zhang MD, Liu ZY, Feng H (2020) The mutation of ent-kaurene synthase, a key enzyme in the gibberellins biosynthesis, confers a non-heading phenotype to Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hortic Res 7:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths J, Murase K, Rieu I et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hasson A, Plessis A, Blein T, Adroher B, Grigg SP, Tsiantis M, Boudaoud A, Damerval C, Laufs P (2011) Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 23:54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  CAS  PubMed  Google Scholar 

  • He YK, Xue WX, Sun YD, Yu XH, Liu PL (2000) Leafy head formation of the progenies of transgenic plants of Chinese cabbage with exogenous auxin genes. Cell Res 10:151–160

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. PNAS 98:2065–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SN, Liu ZY, Yao RP, Li DY, Zhang T, Li X, Hou L, Wang YH, Tang XY, Feng H (2016) Candidate gene prediction for a petal degeneration mutant, pdm, of the Chinese cabbage (Brassica campestris ssp. pekinensis) by using fine map** and transcriptome analysis. Mol Breed 36:26

    Article  CAS  Google Scholar 

  • Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Kato T (1957) Studies on the head formation of Chinese cabbage: histological and physiological studies of head formation. J Jpn Soc Hortic Sci 26:154–204

    Article  Google Scholar 

  • Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C (2007) Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J 51:173–184

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Takahashi H, Iwakawa H et al (2013) Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial–abaxial partitioning in Arabidopsis. Development 140:1958–1969

    Article  CAS  PubMed  Google Scholar 

  • Jung CJ, Hur YY, Yu HJ, Noh JH, Park KS, Lee HJ (2014) Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set Initiation, during parthenocarpic fruit development. PLoS ONE 9:e95634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalve S, Vos DD, Beemster GTS (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010) Ent-kaurenoic acid oxidase genes in wheat. Mol Breeding 25:251–258

    Article  CAS  Google Scholar 

  • Kim GT, Cho KH (2006) Recent advances in the genetic regulation of the shape of simple leaves. Physiol Plant 126:494–502

    CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei L, Fan ZR, Tang L, Chen F (2011) Molecular cloning and identification of tissue-specific expression of ent-kaurene oxidase gene in Momordica charantia. Afr J Biotechnol 10:15724–15730

    CAS  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YF, Fan Y, Jiao Y, Wu J, Zhang Z, Yu XL, Ma Y (2018) Transcriptome profiling of yellow leafy head development during the heading stage in Chinese cabbage (Brassica rapa subsp. pekinesis). Physiol Plantarum 165:800–813

    Article  CAS  Google Scholar 

  • Li J, Jiang JF, Qian Q et al (2011) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JR, Zhang XM, Lu Y et al (2019) Characterization of non-heading mutation in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Front Plant Sci 10:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang JL, Liu B, Wu J, Cheng F, Wang XW (2016) Genetic variation and divergence of genes involved in leaf adaxial–abaxial polarity establishment in Brassica rapa. Front Plant Sci 7:94

    PubMed  PubMed Central  Google Scholar 

  • Lin W-C, Shuai B, Springer PS (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES-Domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial–abaxial patterning. Plant Cell 15:2241–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao YF, Wu FJ, Yu X, Bai JJ, Zhong WL, He YK (2014) MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol 164:710–720

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowan J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  CAS  PubMed  Google Scholar 

  • Ou CQ, Jiang SL, Wang F, Wang ZG, Ma L, Li LW (2013) Cloning and expression analysis of ent-kaurenoic acid oxidase gene (PcKAO1) in Pear. Acta Hortic Sin 40:849–858

    CAS  Google Scholar 

  • Regnault T, Daviere JM, Heintz D, Lange T, Achard P (2014) The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlap** roles throughout Arabidopsis development. Plant J 80:462–474

    Article  CAS  PubMed  Google Scholar 

  • Ren WQ, Wu FJ, Bai JJ, Li XR, Yang X, Xue WX, Liu H, He YK (2020) BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage (Brassica rapa ssp. pekinensis). Hortic Res 7:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro DM, Araújo WL, Fernie AR, Schippers JHM, Mueller-Roeber B (2012) Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J Exp Bot 63:2769–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N et al (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhan JL (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108

    Article  CAS  PubMed  Google Scholar 

  • Sicard A, Thamm A, Marona C, Lee YW, Wahl V, Stinchcombe JR, Wright SI, Kappel C, Lenhard M (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol 24:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Silverstone AL, Chang CW, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19

    Article  CAS  PubMed  Google Scholar 

  • Song J, Guo BJ, Song FW, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482:34–42

    Article  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin of signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. PNAS 96:4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercruyssen L, Verkest A, Gonzalez N et al (2014) ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell 26:210–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FD, Li HY, Zhang YH, Li JJ, Li LB, Liu LF, Wang LH, Wang CH, Gao JS (2013) MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing. Gene 532:222–229

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Wu FJ, Bai JJ, He YK (2014) BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnol J 12:312–321

    Article  CAS  PubMed  Google Scholar 

  • Wei CH, Zhu CY, Yang LP, Zhao W, Ma RX, Li H, Zhang Y, Ma JX, Yang JQ, Zhang X (2019) A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. Hortic Res 6:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: Its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Yang YH, Zhang YD, Zhu Z, Zhao L, Chen T, Zhao QY, Wang CL (2010) Effects of gibberellic acid 3 and abscisic acid on growth, physiological characteristics and gene expression of GA20ox2 and GA3ox2 in different rice cultivars. Chin J Rice Sci 24:433–437

    CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Gene Dev 19:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XH, Peng JS, Feng XZ, Yang SX, Zheng ZR, Tang XR, Shen RJ, **lin Liu PL, He YK (2000) Cloning and structural and expressional characterization of BcpLH gene preferentially expressed in folding leaf of Chinese cabbage. Sci China Ser C 43:321–329

    Article  CAS  Google Scholar 

  • Yu X, Wang H, Zhong WL, Bai JJ, Liu PL, He YK (2013) QTL Map** of leafy heads by genome resequencing in the RIL population of Brassica rapa. PLoS ONE 8:e76059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Gao LW, Liu WS, Song LX, **ao D, Liu TK, Hou XL, Zhang CW (2019) Transcription coactivator ANGUSTIFOLIA3 (AN3) regulates leafy head formation in Chinese cabbage. Front Plant Sci 10:520

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgurski JM, Sharma R, Bolokoski DA, Schultz EA (2005) Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17:77–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu ZY, Wang P, Wang QS, Yang S, Feng H (2013) Fine map** of Br Wax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breeding 32:867–874

    Article  CAS  Google Scholar 

  • Zhang XL, Su YB, Liu YM, Fang ZY, Yang LM, Zhuang M, Zhang YY, Li ZS, Lv HY (2016a) Genetic analysis and QTL map** of traits related to head shape in cabbage (Brassica oleracea var. capitata L.). Sci Hortic 207:82–88

    Article  CAS  Google Scholar 

  • Zhang CW, Wei YP, **ao D, Gao LW, Lyu SW, Hou XL, Bouuema G (2016b) Transcriptomic and proteomic analyses provide new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage. J Proteomics 144:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Liang JL, Cai X, Chen HX, Wu J, Lin RM, Cheng F, Wang XW (2021) Divergence of three BRX homoeologs in Brassica rapa and its effect on leaf morphology. Hortic Res 8:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (https://www.editage.cn) for English language editing.

Funding

This study was funded by the National Natural Science Foundation of China (31801854) and Liaoning Provincial Natural Science Foundation of China (2021-MS-231).

Author information

Authors and Affiliations

Authors

Contributions

HF and SH designed the experiments; SH and YG performed the research; MX, JX, RL, and SS participated in the research; CL and ZL provided technical help; YZ and XY participated in data analysis; and SH supervised this study and wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Hui Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Richard G. F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1 Phylogenetic tree of the BrKAO protein (TIF 1256 kb)

122_2022_4126_MOESM2_ESM.tif

Fig. S2 Expression analysis of BrKAO2 and BrKAO1 in wild-type ‘FT’ and nhm3-1 and nhm3–2 mutants. BrKAO2 and BrKAO1 expression levels in wild-type ‘FT’ were used as references for relative expression. *significant differences in expression levels at P < 0.05 (TIF 648 kb)

Fig. S3Gibberellin biosynthetic pathway (TIF 701 kb)

Fig. S4 DEGs in different pairwise comparisons (TIF 64 kb)

Table S1 Primers for KASP analysis (XLS 18 kb)

Table S2 Primers for gene cloning (XLS 885 kb)

Table S3 Primers for qRT-PCR analysis (XLS 24 kb)

Table S4 Candidate SNPs determined by MutMap (XLS 26 kb)

Table S5 Results of KASP analysis (XLS 21 kb)

Table S6 Read statistics based on RNA-Seq data of nine libraries of ‘FT’, nhm3-1, and nhm3-1+GA3 plants (XLS 28 kb)

Table S7 DEGs identified in ‘FT’ vs. nhm3-1 comparison (XLS 20 kb)

Table S8 DEGs identified in ‘FT’ vs. nhm3-1+GA3 comparison (XLS 888 kb)

Table S9 DEGs identified in nhm3-1 vs. nhm3-1+GA3 comparison (XLS 89 kb)

Table S10 DEGs of eight profiles in trend analysis (XLS 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Gao, Y., Xue, M. et al. BrKAO2 mutations disrupt leafy head formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 135, 2453–2468 (2022). https://doi.org/10.1007/s00122-022-04126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04126-8

Navigation