Log in

Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL map** for fiber-related traits and elucidation of a stable and novel QTL affecting seed lignin content, cellulose content and seed oil content.

Abstract

Dissection of the genetic networks for fiber biosynthesis is important for improving the seed oil content and meal value of Brassica napus. In this study, the genetic basis of seed fiber biosynthesis in B. napus was investigated via quantitative trait locus (QTL) analysis using a doubled haploid population derived from ‘KenC-8’ crossed with ‘N53-2.’ Seed lignin content (LC), cellulose content (CC) and hemicellulose content (HC) were significantly negatively correlated with seed oil content (OC). Co-localization QTLs among LC, CC, HC and OC on A09 were found with contributions ranging from 9.87 to 48.50%. Seven co-localization QTLs involved in the fiber component and OC were further verified by bulked segregant analysis (BSA). The unique QTL uqA9-12 might be a real and new QTL that was commonly identified by QTL map** and BSA and simultaneously affected LC, CC and OC with opposite additive effects. A potential regulatory network controlling seed fiber biosynthesis was constructed to dissect the complex mechanism of seed fiber and oil accumulation, and numerous candidate genes were identified in the fiber-related QTL regions. These results provided an enrichment of QTLs and potential candidates for fiber biosynthesis, as well as useful new information for understanding the complex genetic mechanism underlying rapeseed seed fiber accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Behnke N, Suprianto E, Möllers C (2018) A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). Theor Appl Genet 131:2477–2492

    Article  CAS  PubMed  Google Scholar 

  • Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B et al (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Qi L, Zhang X, Huang J, Wang J, Chen H, Ni X et al (2013) Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus. Theor Appl Genet 26:2499–2509

    Article  CAS  Google Scholar 

  • Cheng X, **a MS, Zeng MX, Gu MJ, Yang MY, Xu J, Liu L et al (2016) Identification of quantitative trait loci associated with oil content and development of near isogenic lines for stable qOC-A10 in Brasscia napus L. Can J Plant Sci 96:423–432

    Article  CAS  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S et al (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fornalé S, Rencoret J, García-Calvo L, Encina A, Rigau J, Gutiérrez A, Del Río JC, Caparros-Ruiz D (2016) Changes in cell wall polymers and degradability in Maize mutants lacking 3′- and 5′-O-methyltransferases involved in lignin biosynthesis. Plant Cell Physiol 58:240–255

    Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, ** MY, Ma AF, Yan XY, Zhang ZS, Li JN (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J et al (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Liang Y, Li J, Chen L (2002) Difference between yellow and black seed coat in B. napus. Chin J Oil Crop Sci 24:13–18

    Google Scholar 

  • Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Qu C, Wittkop B, Yi B, ** of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708

    Article  CAS  PubMed  Google Scholar 

  • Newman LJ, Perazza DE, Juda L, Campbell MM (2004) Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J 37:239–250

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J (2013) Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. J Exp Bot 64:2885–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboanatahiry N, Chao H, Guo L, Gan J, **ang J, Yan M, Zhang L et al (2017) Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genom 18:776

    Article  CAS  Google Scholar 

  • Richmond TA, Somerville C (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148:1655–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotmistrovsky K, Jang W, Schuler GD (2004) A web server for performing electronic PCR. Nucleic Acids Res 32:108–112

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci map** in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bell JM (1995) Quality characteristics of yellow-seeded Brassica seed meals-protein, carbohydrates, and dietary fiber components. J Agric Food Chem 43:2062–2066

    Article  CAS  Google Scholar 

  • Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W (2010) Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome 53:917–928

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon RJ (2013) Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed 132:382–389

    Article  CAS  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. Department of statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Jian H, Wei L, Qu C, Xu X, Lu K, Qian W, Li J, Li M, Liu L (2015a) Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in Rapeseed (Brassica napus L.). PLoS ONE 10:e0145045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, Zhao W, Li B, Chen L, Chao H, Li M (2015b) Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet 128:1175–1192

    Article  PubMed  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Zou C, Wang PX, Xu YB (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB150205), National Natural Science Foundation of China (31671721) and New Century Talents Support Program of the Ministry of Education of China (NCET110172).

Author information

Authors and Affiliations

Authors

Contributions

LM carried out the QTL analysis and wrote the manuscript. HC and HL analyzed the data. LC, WZ and BL participated in the field experiment. HW, LZ and BW provided helpful suggestions for the manuscript. ML designed, led and coordinated the overall study.

Corresponding author

Correspondence to Maoteng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Heiko C. Becker.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 718 kb)

Supplementary material 2 (XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, L., Chao, H., Chen, L. et al. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theor Appl Genet 132, 1761–1775 (2019). https://doi.org/10.1007/s00122-019-03313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03313-4

Navigation