Log in

Atacicept bei Multipler Sklerose

Ein neuer B-Lymphozyten-gerichteter Therapieansatz

Atacicept: a new B lymphocyte-targeted therapy for multiple sclerosis

 

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Multiple Sklerose (MS) gilt traditionell als eine von T-Lymphozyten vermittelte Erkrankung. Allerdings spricht immer mehr für eine kritische Beteiligung von B-Lymphozyten und Autoantikörpern am pathologischen Geschehen bei der MS. Somit liegt es nahe, gegen B-Zellen gerichtete Therapieansätze zu verfolgen. In dieser Arbeit werden zunächst die für eine Schlüsselrolle der B-Zellen bei der Immunpathologie der MS sprechenden Erkenntnisse zusammengefasst und anschließend die Datenlage zur Anwendung von Atacicept, einer neuen B-Lymphozyten-gerichteten Therapiemöglichkeit bei MS, vorgestellt und kritisch gewürdigt. Bei Atacicept handelt es sich um ein humanes rekombinantes Fusionsprotein, das unter anderem aus demjenigen Teil eines bestimmten Rezeptors besteht, an den die Zytokine BLyS („B-lymphocyte stimulator“) und APRIL („A proliferation-inducing ligand“) andocken. BlyS und APRIL sind wichtige Regulatoren der Reifung, Funktion und Überlebensdauer von B-Zellen. Atacicept zeigt selektive Wirkungen auf bestimmte Zellen der B-Lymphozyten-Zellreihe. So wirkt Atacicept auf reife B-Zellen und blockiert Plasmazellen sowie späte Stadien der B-Zell-Entwicklung, während die B-Lymphozyten-Vorläuferzellen und Gedächtnis-B-Zellen unbeeinflusst bleiben. Bereits nachgewiesen sind die Wirksamkeit von Atacicept in Tiermodellen von Autoimmunerkrankungen und die biologische Aktivität von Atacicept bei Patienten mit systemischem Lupus erythematodes (SLE) und rheumatoider Arthritis (RA). In derzeit laufenden klinischen Studien werden Sicherheit, Verträglichkeit und Wirksamkeit von Atacicept bei Patienten mit MS, SLE und RA untersucht.

Summary

Multiple sclerosis (MS) has traditionally been considered to be a T cell-mediated disease. However, there is an increasing body of evidence for the involvement of B cells and autoantibodies in the pathology of this disease, providing a rationale for treatment strategies directed against B cells. This paper summarizes the evidence for a key role of B cells in the immunopathology of MS and reviews data supporting the use of a novel B cell-targeted therapy, atacicept, for this condition. Atacicept is a human recombinant fusion protein that comprises the binding portion of a receptor for both BLyS (B Lymphocyte Stimulator) and APRIL (A PRoliferation-Inducing Ligand), two cytokines that have been identified as important regulators of B cell maturation, function and survival. Atacicept has shown selective effects on cells of the B cell lineage, acting on mature B cells and blocking plasma cells and late stages of B cell development while sparing B cell progenitors and memory cells. The efficacy of atacicept in animal models of autoimmune disease and the biological activity of atacicept in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) has been demonstrated. Ongoing clinical studies are investigating the safety, tolerability and efficacy of atacicept in patients with MS, SLE and RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  2. Kornek B et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    CAS  PubMed  Google Scholar 

  3. Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  4. Marrie RA (2004) Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol 3:709–718

    Article  PubMed  Google Scholar 

  5. Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 101 [Suppl 2]:14599–14606

  6. Willer CJ, Dyment DA, Risch NJ et al (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci U S A 100:12877–12882

    Article  CAS  PubMed  Google Scholar 

  7. Barcellos LF et al (2003) HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 72:710–716

    Article  CAS  PubMed  Google Scholar 

  8. Poser CM (2006) The multiple sclerosis trait and the development of multiple sclerosis: genetic vulnerability and environmental effect. Clin Neurol Neurosurg 108:227–233

    Article  PubMed  Google Scholar 

  9. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  PubMed  Google Scholar 

  10. Chitnis T (2007) The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int Rev Neurobiol 79:43–72

    Article  CAS  PubMed  Google Scholar 

  11. Hemmer B, Nessler S, Zhou D et al (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211

    Article  CAS  PubMed  Google Scholar 

  12. Delgado S, Sheremata WA (2006) The role of CD4+ T-cells in the development of MS. Neurol Res 28:245–249

    Article  CAS  PubMed  Google Scholar 

  13. Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    Article  CAS  PubMed  Google Scholar 

  14. Medana I, Martinic MA, Wekerle H, Neumann H (2001) Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 159:809–815

    CAS  PubMed  Google Scholar 

  15. McDole J, Johnson AJ, Pirko I (2006) The role of CD8+ T-cells in lesion formation and axonal dysfunction in multiple sclerosis. Neurol Res 28:256–261

    Article  CAS  PubMed  Google Scholar 

  16. Chofflon M (2005) Mechanisms of action for treatments in multiple sclerosis: Does a heterogeneous disease demand a multi-targeted therapeutic approach? BioDrugs 19:299–308

    Article  CAS  PubMed  Google Scholar 

  17. Brown BA, Kantesaria PP, McDevitt LM (2007) Fingolimod: a novel immunosuppressant for multiple sclerosis. Ann Pharmacother 41:1660–1668

    Article  CAS  PubMed  Google Scholar 

  18. Hemmer B, Hartung HP (2007) Toward the development of rational therapies in multiple sclerosis: what is on the horizon? Ann Neurol 62:314–326

    Article  CAS  PubMed  Google Scholar 

  19. Cree B (2006) Emerging monoclonal antibody therapies for multiple sclerosis. Neurologist 12:171–178

    Article  PubMed  Google Scholar 

  20. CAMMS223 Trial Investigators et al (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801

  21. Zeyda M et al (2005) Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum 52:2730–2739

    Article  CAS  PubMed  Google Scholar 

  22. Simpson BS, Coles AJ (2007) Rationale for cytotoxic monoclonal antibodies in MS. Int MS J 14:48–56

    CAS  PubMed  Google Scholar 

  23. Genovese MC et al (2008) Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 58:2652–2661

    Article  PubMed  Google Scholar 

  24. Hagenbeek A et al (2008) First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 111:5486–5495

    Article  CAS  PubMed  Google Scholar 

  25. Silverman GJ (2006) Therapeutic B cell depletion and regeneration in rheumatoid arthritis: emerging patterns and paradigms. Arthritis Rheum 54:2356–2367

    Article  CAS  PubMed  Google Scholar 

  26. Liossis SN, Sfikakis PP (2008) Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol 127:280–285

    Article  CAS  PubMed  Google Scholar 

  27. Hawker K (2008) B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical data. Curr Opin Neurol 21 [Suppl 1]:19–25

    Google Scholar 

  28. Zouali MB (2008) Lymphocytes–chief players and therapeutic targets in autoimmune diseases. Front Biosci 13:4852–4861

    Article  CAS  PubMed  Google Scholar 

  29. Svensson L et al (2002) A comparative analysis of B cell-mediated myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis pathogenesis in B cell-deficient mice reveals an effect on demyelination. Eur J Immunol 32:1939–1946

    Article  CAS  PubMed  Google Scholar 

  30. Owens GP, Bennett JL, Gilden DH, Burgoon MP (2006) The B cell response in multiple sclerosis. Neurol Res 28:236–244

    Article  CAS  PubMed  Google Scholar 

  31. Cepok S et al (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676

    Article  PubMed  Google Scholar 

  32. Gilden DH et al (2001) Molecular immunologic strategies to identify antigens and B-cell responses unique to multiple sclerosis. Arch Neurol 58:43–48

    Article  CAS  PubMed  Google Scholar 

  33. Qin Y et al (2003) Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83:1081–1088

    Article  PubMed  Google Scholar 

  34. Archelos JJ, Storch MK, Hartung HP (2000) The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 47:694–706

    Article  CAS  PubMed  Google Scholar 

  35. Franciotta D, Salvetti M, Lolli F et al (2008) B cells and multiple sclerosis. Lancet Neurol 7:852–858

    Article  CAS  PubMed  Google Scholar 

  36. Villar LM et al (2005) Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 115:187–194

    CAS  PubMed  Google Scholar 

  37. Perini P, Ranzato F, Calabrese M et al (2006) Intrathecal IgM production at clinical onset correlates with a more severe disease course in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:953–955

    Article  CAS  PubMed  Google Scholar 

  38. Prineas JW, Graham JS (1981) Multiple sclerosis: cap** of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10:149–158

    Article  CAS  PubMed  Google Scholar 

  39. Scolding NJ et al (1989) Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339:620–622

    Article  CAS  PubMed  Google Scholar 

  40. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  41. Magliozzi R et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  42. MacKay F, Tangye SG (2004) The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  43. Dillon SR, Gross JA, Ansell SM, Novak AJ (2006) An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev Drug Discov 5:235–246

    Article  CAS  PubMed  Google Scholar 

  44. Krumbholz M et al (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201:195–200

    Article  CAS  PubMed  Google Scholar 

  45. Thangarajh M, Masterman T, Hillert J et al (2007) A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scand J Immunol 65:92–98

    Article  CAS  PubMed  Google Scholar 

  46. Thangarajh M, Gomes A, Masterman T et al (2004) Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 152:183–190

    Article  CAS  PubMed  Google Scholar 

  47. Thangarajh M et al (2005) Increased levels of APRIL (a proliferation-inducing ligand) mRNA in multiple sclerosis. J Neuroimmunol 167:210–214

    Article  CAS  PubMed  Google Scholar 

  48. Weinshenker BG et al (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46:878–886

    Article  CAS  PubMed  Google Scholar 

  49. Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  CAS  PubMed  Google Scholar 

  50. Keegan M et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    Article  PubMed  Google Scholar 

  51. Zettl UK et al (2006) Lesion pathology predicts response to plasma exchange in secondary progressive MS. Neurology 67:1515–1516

    Article  CAS  PubMed  Google Scholar 

  52. Stüve O et al (2005) Clinical stabilization and effective B-lymphocyte depletion in the cerebrospinal fluid and peripheral blood of a patient with fulminant relapsing-remitting multiple sclerosis. Arch Neurol 62:1620–1623

    Article  PubMed  Google Scholar 

  53. Stüve O et al (2009) Long-term B-lymphocyte depletion with rituximab in patients with relapsing-remitting multiple sclerosis. Arch Neurol 66:259–261

    Article  PubMed  Google Scholar 

  54. Kerschensteiner M et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  CAS  PubMed  Google Scholar 

  55. Gross JA et al (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999

    Article  CAS  PubMed  Google Scholar 

  56. Schneider P et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756

    Article  CAS  PubMed  Google Scholar 

  57. Marsters SA et al (2000) Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol 10:785–788

    Article  CAS  PubMed  Google Scholar 

  58. Roschke V et al (2002) BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 169:4314–4321

    CAS  PubMed  Google Scholar 

  59. Yan M et al (2001) Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol 2:638–643

    Article  CAS  PubMed  Google Scholar 

  60. Seshasayee D et al (2003) Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18:279–288

    Article  CAS  PubMed  Google Scholar 

  61. Castigli E et al (2005) TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 201:35–39

    Article  CAS  PubMed  Google Scholar 

  62. Castigli E et al (2005) TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 37:829–834

    Article  CAS  PubMed  Google Scholar 

  63. Hsu BL, Harless SM, Lindsley RC et al (2002) Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol 168:5993–5996

    CAS  PubMed  Google Scholar 

  64. Thompson JS et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293:2108–2111

    Article  CAS  PubMed  Google Scholar 

  65. Dillon SR et al (2008) BLyS/APRIL heterotrimers activate human B cells, are elevated in SLE and RA patient sera, and are neutralized by atacicept (abstr 760). Arthritis Rheum 58:A17–A3278

    Article  Google Scholar 

  66. Benson MJ et al (2008) Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 180:3655–3659

    CAS  PubMed  Google Scholar 

  67. Gross JA et al (2001) TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 15:289–302

    Article  CAS  PubMed  Google Scholar 

  68. Munafo A, Priestley A, Nestorov I et al (2007) Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol 63:647–656

    Article  CAS  PubMed  Google Scholar 

  69. Dall’Era M et al (2007) Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56:4142–4150

    Article  CAS  Google Scholar 

  70. Tak PP et al (2008) Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum 58:61–72

    Article  CAS  PubMed  Google Scholar 

  71. Heffernan J et al (2008) The evaluation of atacicept on protective immunity in the mouse streptococcal host resistance model (abstr 1934). Toxicol Sci 102:398

    Google Scholar 

  72. MacKay F et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190:1697–1710

    Article  CAS  PubMed  Google Scholar 

  73. Do RK et al (2000) Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 192:953–964

    Article  CAS  PubMed  Google Scholar 

  74. Varfolomeev E et al (2004) APRIL-deficient mice have normal immune system development. Mol Cell Biol 24:997–1006

    Article  CAS  PubMed  Google Scholar 

  75. Carbonatto M et al (2008) Nonclinical safety, pharmacokinetics, and pharmacodynamics of atacicept. Toxicol Sci 105:200–210

    Article  CAS  PubMed  Google Scholar 

  76. Nestorov I, Munafo A, Papasouliotis O, Visich J (2008) Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol 48:406–417

    Article  CAS  PubMed  Google Scholar 

  77. Anolik J, Sanz IB (2004) B cells in human and murine systemic lupus erythematosus. Curr Opin Rheumatol 16:505–512

    Article  PubMed  Google Scholar 

  78. Martinez-Gamboa L, Brezinschek HP, Burmester GR, Dorner T (2006) Immunopathologic role of B lymphocytes in rheumatoid arthritis: rationale of B cell-directed therapy. Autoimmun Rev 5:437–442

    Article  CAS  PubMed  Google Scholar 

  79. Kalled SL (2005) The role of BAFF in immune function and implications for autoimmunity. Immunol Rev 204:43–54

    Article  CAS  PubMed  Google Scholar 

  80. Huntington ND et al (2006) A BAFF antagonist suppresses experimental autoimmune encephalomyelitis by targeting cell-mediated and humoral immune responses. Int Immunol 18:1473–1485

    Article  CAS  PubMed  Google Scholar 

  81. Lewis K et al (2008) Atacicept inhibits disease in multiple forms of experimental autoimmune encephalomyelitis. Mult Scler 14 [Suppl 1]:78(P168)

  82. Plitz T et al (2008) Design of a four-arm, randomized, placebo-controlled phase II study of weeks of atacicept monotherapy in relapsing multiple sclerosis. Mult Scler 14 [Suppl 1]:173(P493)

  83. Sergott RC et al (2008) Design of an exploratory, two-arm, randomized, placebo-controlled Phase II study of 36 weeks of atacicept treatment in patients with optic neuritis as clinically isolated syndrome. Mult Scler 14 [Suppl 1]:177(P508)

  84. Fisher JB et al (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113:324–332

    Article  PubMed  Google Scholar 

  85. Gordon-Lipkin E et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69:1603–1609

    Article  CAS  PubMed  Google Scholar 

  86. Frohman E et al (2006) Optical coherence tomography in multiple sclerosis. Lancet Neurol 5:853–863

    Article  PubMed  Google Scholar 

Download references

Danksagung

Der Autor bedankt sich bei Frau Dr. Andrea Plant PhD (Caudex Medical) für die technische Hilfe bei der Erstellung des Manuskripts, Herrn Dr. Norbert Zessack, MerckSerono für die kritische Durchsicht sowie Herrn PD Dr. Patrick Küry für die Hilfe bei der Erstellung der Abbildungen.

Interessenkonflikt

Der Autor hat nach Genehmigung durch den Rektor der HHU Honorare für Beratungen und Vortragstätigkeit von BayerScheringPharma; Biogen Idec; Bio MS; Genzyme; Merck Serono; Novartis; Teva Sanofi Aventis erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Hartung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, HP. Atacicept bei Multipler Sklerose. Nervenarzt 80, 1462–1472 (2009). https://doi.org/10.1007/s00115-009-2838-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-009-2838-6

Schlüsselwörter

Keywords

Navigation