Log in

Tibiale Press-fit-Fixierungen von Beugesehnen zur Rekonstruktion des vorderen Kreuzbandes

Tibial press-fit fixation of flexor tendons for reconstruction of the anterior cruciate ligament

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Verankerung von Hamstringtransplantaten zur Rekonstruktion des vorderen Kreuzbandes (VKB) mittels einer Press-fit-Fixation ist eine interessante Technik, da keine Implantate nötig sind. Ziel dieser Studie war es, die biomechanischen Eigenschaften von Press-fit-Fixationen zu charakterisieren und sie mit einer Interferenzschraubenfixation zu vergleichen.

Methoden

Für die Explantation der Semitendinosus- und Grazilissehnen (SG) wurden 28 Leichenknie verwendet. Ein zusätzlicher Knochenblock wurde medial der Tuberositas tibiae aus einem Bereich, in dem der tibiale Bohrkanal bei der VKB-Rekonstruktion angelegt wird, entnommen. Für die Verankerung im Bohrkanal wurden porcine Femora benutzt.

Ergebnisse

Die maximale Ausreißkraft der Press-fit-tape-Fixation lag bei 970±83 N, die Knochenbrückenfixation lag bei 572±151 N, die Interferenzschraubenfixation lag bei 544±109 N, die Press-fit-suture-Fixation lag bei 402±77 N und die Knochenblockfixation erreichte einen Wert von 290±74 N. Die maximale Ausreißkraft der T-Gruppe ist allen anderen Gruppen signifikant überlegen (p<0,001).

Schlussfolgerung

Diese Studie zeigt, dass eine tibiale Press-fit-Technik, die autologe Knochenblöcke verwendet, einer einfachen Interferenzschraubenfixation hinsichtlich ihrer maximalen Versagenslast überlegen ist.

Abstract

Background

Press-fit fixation of hamstring tendon autografts for anterior cruciate ligament reconstruction is an interesting technique because no hardware is necessary. This study compares the biomechanical properties of press-fit fixations to an interference screw fixation.

Methods

Twenty-eight human cadaveric knees were used for hamstring tendon explantation. An additional bone block was harvested from the tibia. We used 28 porcine femora for graft fixation. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclic loading were investigated.

Results

The maximum load to failure was 970±83 N for the press-fit tape fixation (T), 572±151 N for the bone bridge fixation (TS), 544±109 N for the interference screw fixation (I), 402±77 N for the press-fit suture fixation (S) and 290±74 N for the bone block fixation technique (F). The T fixation had a significantly better maximum load to failure compared to all other techniques (p<0.001).

Conclusion

This study demonstrates that a tibial press-fit technique which uses an additional bone block has better maximum load to failure results compared to a simple interference screw fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aune AK, Ekeland A, Cawley PW (1998) Interference screw fixation of hamstring vs patellar tendon grafts for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6:99–102

    Article  PubMed  CAS  Google Scholar 

  2. Behfar V, Hurschler C, Albrecht K et al (2005) Entwicklung und biomechanische Testung einer femoralen Press-fit-Fixierung für Semitendinosus-/Gracilissehnen. Unfallchirurg 8:630–637

    Article  Google Scholar 

  3. Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 3:138–145

    Article  Google Scholar 

  4. Drogset JO, Grøntvedt T, Myhr G (2006) Magnetic resonance imaging analysis of bioabsorbable interference screws used for fixation of bone patellar tendon bone autografts in endoscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 34:1164–1169

    Article  PubMed  Google Scholar 

  5. Fink C, Zapp M, Benedetto KP et al (2001) Tibial tunnel enlargement following anterior cruciate ligament reconstruction with patellar tendon autograft. Arthroscopy 2:138–143

    Google Scholar 

  6. Freedman KB, D’amato MJ, Nedeff DD et al (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11

    PubMed  Google Scholar 

  7. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21:791–803

    Article  PubMed  Google Scholar 

  8. Herrington L, Wrapson C, Matthews M, Matthews H (2005) Anterior cruciate ligament reconstruction, hamstring versus bone patella tendon bone grafts: a systematic literature review of outcome from surgery. Knee 12:41–50

    Article  PubMed  Google Scholar 

  9. Hertel P, Behrend H, Cierpinski T et al (2005) ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-year clinical results. Knee Surg Sports Traumatol Arthrosc 13:248–255

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann RFG, Peine R, Bail HJ et al (1999) Initial fixation strength of modified patellar tendon grafts for anatomic fixation in anterior cruciate ligament reconstruction. Arthroscopy 15:392–399

    Article  PubMed  CAS  Google Scholar 

  11. Höher J, Möller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240

    Article  PubMed  Google Scholar 

  12. Howell SM, Lawhorn KW (2004) Gravity reduces the tibia when using a tibial guide that targets the intercondylar roof. Am J Sports Med 32:1702–1710

    Article  PubMed  Google Scholar 

  13. Jagodzinski M, Ettinger M, Haasper et al. (2010) Biomechanische Analyse der Press-fit-Fixierung von Kreuzbandtransplantaten. Unfallchirurg 113(7):532-539

    Article  PubMed  CAS  Google Scholar 

  14. Jagodzinski M, Behfar V, Hurschler C et al (2004) Femoral press-fit fixation of the hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 32:1723–1730

    Article  PubMed  Google Scholar 

  15. Jansson KA, Harilainen A, Sandelin J et al (1999) Bone tunnel enlargement after anterior cruciate ligament reconstruction with the hamstring autograft and endobutton fixation technique A clinical, radiographic and magnetic resonance imaging study with 2 years follow-up. Knee Surg Sports Traumatol Arthrosc 7:290–295

    Article  PubMed  CAS  Google Scholar 

  16. Kousa P, Järvinen T, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction part II: The tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  17. Kousa P, Järvinen TL, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: Part I: Femoral site. Am J Sports Med 31:174–181

    PubMed  Google Scholar 

  18. Kurosaka M, Yoshiya S, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229

    Article  PubMed  CAS  Google Scholar 

  19. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    PubMed  CAS  Google Scholar 

  20. Musahl V, Abramowitch SD, Gabriel MT et al (2003) Tensile properties of an anterior cruciate ligament graft after bone-patellar tendon-bone press-fit fixation. Knee Surg Sports Traumatol Arthrosc 11:68–74

    PubMed  Google Scholar 

  21. Noyes FR, Barber-Westin SD (2001) Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg 83:1131–1143

    PubMed  Google Scholar 

  22. Nurmi JT, Sievänen H, Kannus P et al (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771

    Article  PubMed  Google Scholar 

  23. Paessler HH, Mastrokalos DS (2003) Anterior cruciate ligament reconstruction using semitendinosus and gracilis tendons, bone patellar tendon, or quadriceps tendongraft with press-fit fixation without hardware A new and innovative procedure. Orthop Clin North Am 34:49–64

    Article  PubMed  Google Scholar 

  24. Seil R, Rupp S, Krauss PW et al (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26:815–819

    PubMed  CAS  Google Scholar 

  25. Webster KE, Feller JA, Hameister KA (2001) Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 9:86–91

    Article  PubMed  CAS  Google Scholar 

  26. Weiler A, Hoffmann RF, Stähelin AC et al (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14:29–37

    Article  PubMed  CAS  Google Scholar 

  27. Weiler A, Hoffmann RF, Bail HJ et al (2002) Tendon healing in a bone tunnel. Arthroscopy 18:124–135

    Article  PubMed  Google Scholar 

  28. Weiler A, Hoffmann RF, Siepe CJ et al (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    PubMed  CAS  Google Scholar 

  29. Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a metaanalysis. Arthroscopy 17:248–257

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn Reinhold Krentscher aus dem Institut für Rechtsmedizin der Medizinischen Hochschule Hannover für seine Hilfe.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ettinger.

Additional information

Teile dieser Arbeit sind bereits erschienen in Jagodzinski et al. (2010) Biomechanische Analyse der Press-fit-Fixierung von Kreuzbandtransplanaten. Unfallchirurg 113(7):532–539.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettinger, M., Liodakis, E., Haasper, C. et al. Tibiale Press-fit-Fixierungen von Beugesehnen zur Rekonstruktion des vorderen Kreuzbandes. Unfallchirurg 115, 811–816 (2012). https://doi.org/10.1007/s00113-010-1944-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-010-1944-z

Schlüsselwörter

Keywords

Navigation