Log in

The mutual interplay of redox signaling and connexins

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Connexins (Cxs) are ubiquitous transmembrane proteins that possess both channel function (e.g., formations of gap junction and hemichannel) and non-channel properties (e.g., gene transcription and protein-protein interaction). Several factors have been identified to play a role in the regulation of Cxs, which include those acting intracellularly, as redox potential, pH, intramolecular interactions, and post-translational modifications (e.g., phosphorylation, S-nitrosylation) as well as those acting extracellularly, such as Ca2+ and Mg2+. The relationship between redox signaling and Cxs attracts considerable attention in recent years. There is ample evidence showing that redox signaling molecules (e.g., hydrogen peroxide (H2O2), nitric oxide (NO)) affect Cxs-based channel function while the opening of Cx channels also triggers the transfer of various redox-related metabolites (e.g., reactive oxygen species, glutathione, nicotinamide adenine dinucleotide, and NO). On the basis of these evidences, we propose the existence of redox-Cxs crosstalk. In this review, we briefly discuss the interaction between redox signaling and Cxs and the implications of the intersection in disease pathology and future therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BTF3:

Basic transcription factor-3

Cav-1:

Caveolin-1

CBX:

Carbenoxolone

Cx:

Connexin

Cys:

Cysteine

DTT:

Dithiothreitol

EL:

Extracellular loop

eNOS:

Endothelial nitric oxide synthase

GJ:

Gap junction

GSH:

Glutathione

GSNO:

S-nitrosoglutathione

H2O2 :

Hydrogen peroxide

HC:

Hemichannel

HM:

Hematopoietic microenvironment

HSCs:

Hematopoietic stem cells

HSC/P:

HSC and progenitor

IL:

Intracellular loop

IP3:

Inositol 1, 4, 5-trisphosphate

NAD+ :

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

NO:

Nitric oxide

NOX2:

NADPH oxidase 2

OS:

Oxidative stress

PKG:

Protein kinase G

ROS:

Reactive oxygen species

SNO:

S-nitrosylation

TM:

Transmembrane domain

ZO-1:

Zonula occludens-1

References

  1. Bonacquisti EE, Nguyen J (2019) Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett 442:439–444

    Article  CAS  PubMed  Google Scholar 

  2. Abascal F, Zardoya R (2013) Evolutionary analyses of gap junction protein families. Biochim Biophys Acta 1828:4–14

    Article  CAS  PubMed  Google Scholar 

  3. Laird DW, Lampe PD (2018) Therapeutic strategies targeting connexins. Nat Rev Drug Discov 17:905–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Söhl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  Google Scholar 

  5. Oshima A (2014) Structure and closure of connexin gap junction channels. FEBS Lett 588:1230–1237

    Article  CAS  PubMed  Google Scholar 

  6. Bai D, Yue B, Aoyama H (2018) Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. Biochim Biophys Acta Biomembr 1860:9–21

    Article  CAS  PubMed  Google Scholar 

  7. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10:2045–2058

    Article  CAS  PubMed  Google Scholar 

  8. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 105:18770–18775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoorelbeke D, Decrock E, De Smet M, De Bock M, Descamps B, Van Haver V, Delvaeye T, Krysko DV, Vanhove C, Bultynck G et al (2020) Cx43 channels and signaling via IP(3)/Ca(2+), ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death Dis 11:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slavi N, Rubinos C, Li L, Sellitto C, White TW, Mathias R, Srinivas M (2014) Connexin 46 (cx46) gap junctions provide a pathway for the delivery of glutathione to the lens nucleus. J Biol Chem 289:32694–32702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotini M, Barriga EH, Leslie J, Gentzel M, Rauschenberger V, Schambony A, Mayor R (2018) Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun 9:3846

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC (2004) Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J Biol Chem 279:54695–54701

    Article  CAS  PubMed  Google Scholar 

  13. Spagnol G, Trease AJ, Zheng L, Gutierrez M, Basu I, Sarmiento C, Moore G, Cervantes M, Sorgen PL (2018) Connexin43 carboxyl-terminal domain directly interacts with β-catenin. Int J Mol Sci 19. https://doi.org/10.3390/ijms19061562

  14. Saidi Brikci-Nigassa A, Clement MJ, Ha-Duong T, Adjadj E, Ziani L, Pastre D, Curmi PA, Savarin P (2012) Phosphorylation controls the interaction of the connexin43 C-terminal domain with tubulin and microtubules. Biochemistry 51:4331–4342

    Article  CAS  PubMed  Google Scholar 

  15. Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW (2008) Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19:912–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Sáez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 104:8322–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rozas-Villanueva MF, Casanello P, Retamal MA (2020) Role of ROS/RNS in preeclampsia: are connexins the missing piece? Int J Mol Sci 21. https://doi.org/10.3390/ijms21134698

  18. Hua R, Zhang J, Riquelme MA, Jiang JX (2021) Connexin gap junctions and hemichannels link oxidative stress to skeletal physiology and pathology. Curr Osteoporos Rep 19:66–74

    Article  PubMed  PubMed Central  Google Scholar 

  19. Skeberdis VA, Rimkute L, Skeberdyte A, Paulauskas N, Bukauskas FF (2011) pH-dependent modulation of connexin-based gap junctional uncouplers. J Physiol 589:3495–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M (2018) Connexins: synthesis, post-translational modifications, and trafficking in health and disease. Int J Mol Sci 19. https://doi.org/10.3390/ijms19051296

  21. Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Correia-de-Sá P (2013) Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun Signal 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tejada MG, Sudhakar S, Kim NK, Aoyama H, Shilton BH, Bai D (2018) Variants with increased negative electrostatic potential in the Cx50 gap junction pore increased unitary channel conductance and magnesium modulation. Biochem J 475:3315–3330

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Gao L, **a P, Zhao J, Li W, Zhou Y, Wei Q, Wu Q, Wu Q, Sun D, Gao K (2021) Glycyrrhetinic acid protects renal tubular cells against oxidative injury via reciprocal regulation of JNK-connexin 43-thioredoxin 1 signaling. Front Pharmacol 12:619567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang Y, Mao Z, Zhang Z, Obata F, Yang X, Zhang X, Huang Y, Mitsui T, Fan J, Takeda M, Yao J (2019) Connexin43 contributes to inflammasome activation and lipopolysaccharide-initiated acute renal injury via modulation of intracellular oxidative status. Antioxid Redox Signal 31:1194–1212

    Article  CAS  PubMed  Google Scholar 

  25. Retamal MA, Orellana VP, Arévalo NJ, Rojas CG, Arjona RJ, Alcaíno CA, González W, Canan JG, Moraga-Amaro R, Stehberg J, Reuss L, Altenberg GA (2019) Cx46 hemichannel modulation by nitric oxide: role of the fourth transmembrane helix cysteine and its possible involvement in cataract formation. Nitric Oxide 86:54–62

    Article  CAS  PubMed  Google Scholar 

  26. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15:10–12

    Article  CAS  PubMed  Google Scholar 

  27. Retamal MA, Cortés CJ, Reuss L, Bennett MV, Sáez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 103:4475–4480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farnsworth NL, Walter RL, Hemmati A, Westacott MJ, Benninger RK (2016) Low level pro-inflammatory cytokines decrease connexin36 gap junction coupling in mouse and human islets through nitric oxide-mediated protein kinase Cδ. J Biol Chem 291:3184–3196

    Article  CAS  PubMed  Google Scholar 

  29. Lillo MA, Himelman E, Shirokova N, **e LH, Fraidenraich D, Contreras JE (2019) S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 4. https://doi.org/10.1172/jci.insight.130091

  30. Barnett SD, Asif H, Anderson M, Buxton ILO (2021) Novel tocolytic strategy: modulating Cx43 activity by S-nitrosation. J Pharmacol Exp Ther 376:444–453

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vielma AZ, Boric MP, Gonzalez DR (2020) Apocynin treatment prevents cardiac connexin 43 hemichannels hyperactivity by reducing nitroso-redox stress in Mdx mice. Int J Mol Sci 21. https://doi.org/10.3390/ijms21155415

  32. Lu C, McMahon DG (1997) Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J Physiol 499(Pt 3):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel LS, Mitchell CK, Dubinsky WP, O'Brien J (2006) Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP. Cell Commun Adhes 13:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kameritsch P, Hoffmann A, Pohl U (2003) Opposing effects of nitric oxide on different connexins expressed in the vascular system. Cell Commun Adhes 10:305–309

    Article  CAS  PubMed  Google Scholar 

  35. McKinnon RL, Bolon ML, Wang HX, Swarbreck S, Kidder GM, Simon AM, Tyml K (2009) Reduction of electrical coupling between microvascular endothelial cells by NO depends on connexin37. Am J Physiol Heart Circ Physiol 297:H93–h101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE (2011) Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31:399–407

    Article  CAS  PubMed  Google Scholar 

  37. Lin D, Takemoto DJ (2005) Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions J Biol Chem 280:13682–13693

    CAS  PubMed  Google Scholar 

  38. Rouach N, Calvo CF, Duquennoy H, Glowinski J, Giaume C (2004) Hydrogen peroxide increases gap junctional communication and induces astrocyte toxicity: regulation by brain macrophages. Glia 45:28–38

    Article  PubMed  Google Scholar 

  39. Hu J, Engman L, Cotgreave IA (1995) Redox-active chalcogen-containing glutathione peroxidase mimetics and antioxidants inhibit tumour promoter-induced downregulation of gap junctional intercellular communication between WB-F344 liver epithelial cells. Carcinogenesis 16:1815–1824

    Article  CAS  PubMed  Google Scholar 

  40. Contreras JE, Sánchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 99:495–500

    Article  CAS  PubMed  Google Scholar 

  41. Anderson ME, Powrie F, Puri RN, Meister A (1985) Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys 239:538–548

    Article  CAS  PubMed  Google Scholar 

  42. Retamal MA, Yin S, Altenberg GA, Reuss L (2009) Modulation of Cx46 hemichannels by nitric oxide. Am J Phys Cell Phys 296:C1356–C1363

    CAS  Google Scholar 

  43. Retamal MA, Fiori MC, Fernandez-Olivares A, Linsambarth S, Peña F, Quintana D, Stehberg J, Altenberg GA (1865) 4-Hydroxynonenal induces Cx46 hemichannel inhibition through its carbonylation. Biochim Biophys Acta Mol Cell Biol Lipids 2020:158705

  44. Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907

    Article  CAS  PubMed  Google Scholar 

  45. Theis M, Söhl G, Eiberger J, Willecke K (2005) Emerging complexities in identity and function of glial connexins. Trends Neurosci 28:188–195

    Article  CAS  PubMed  Google Scholar 

  46. Crespin S, Fromont G, Wager M, Levillain P, Cronier L, Monvoisin A, Defamie N, Mesnil M (2016) Expression of a gap junction protein, connexin43, in a large panel of human gliomas: new insights. Cancer Med 5:1742–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, Brech A, Nesbakken A, Lothe RA, Leithe E, Rivedal E (2012) Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer 131:570–581

    Article  CAS  PubMed  Google Scholar 

  48. Aasen T, Sansano I, Montero M, Romagosa C, Temprana-Salvador J, Martínez-Marti A, Moliné T, Hernández-Losa J, Ramón y Cajal S (2019) Insight into the role and regulation of gap junction genes in lung cancer and identification of nuclear Cx43 as a putative biomarker of poor prognosis. Cancers (Basel) 11 https://doi.org/10.3390/cancers11030320

  49. Gago-Fuentes R, Fernández-Puente P, Megias D, Carpintero-Fernández P, Mateos J, Acea B, Fonseca E, Blanco FJ, Mayan MD (2015) Proteomic analysis of connexin 43 reveals novel interactors related to osteoarthritis. Mol Cell Proteomics 14:1831–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    Article  CAS  PubMed  Google Scholar 

  51. Kotova A, Timonina K, Zoidl GR (2020) Endocytosis of connexin 36 is mediated by interaction with caveolin-1. Int J Mol Sci 21. https://doi.org/10.3390/ijms21155401

  52. Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, Chanvorachote P (2010) Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 285:38832–38840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B, Madhu M, Gutstein DE, Fishman GI, Barrio LC, Cancelas JA (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A 109:9071–9076

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yuan D, Li X, Luo C, Li X, Cheng N, Ji H, Qiu R, Luo G, Chen C, Hei Z (2019) Inhibition of gap junction composed of Cx43 prevents against acute kidney injury following liver transplantation. Cell Death Dis 10:767

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gu Y, Huang F, Wang Y, Chen C, Wu S, Zhou S, Hei Z, Yuan D (2018) Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. J Transl Med 16:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chi Y, Zhang X, Zhang Z, Mitsui T, Kamiyama M, Takeda M, Yao J (2016) Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status. Redox Biol 9:198–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi W, Riquelme MA, Gu S, Jiang JX (2018) Connexin hemichannels mediate glutathione transport and protect lens fiber cells from oxidative stress. J Cell Sci 131. https://doi.org/10.1242/jcs.212506

  58. Okuda H, Nishida K, Higashi Y, Nagasawa K (2013) NAD(+) influx through connexin hemichannels prevents poly(ADP-ribose) polymerase-mediated astrocyte death. Life Sci 92:808–814

    Article  CAS  PubMed  Google Scholar 

  59. Figueroa XF, Lillo MA, Gaete PS, Riquelme MA, Sáez JC (2013) Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology 75:471–478

    Article  CAS  PubMed  Google Scholar 

  60. Hill CE, Hickey H, Sandow SL (2000) Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery. J Auton Nerv Syst 81:122–127

    Article  CAS  PubMed  Google Scholar 

  61. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ren D, Zheng P, Zou S, Gong Y, Wang Y, Duan J, Deng J, Chen H, Feng J, Zhong C, Chen W (2021) GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01070-x

  63. Golan K, Singh AK, Kollet O, Bertagna M, Althoff MJ, Khatib-Massalha E, Petrovich-Kopitman E, Wellendorf AM, Massalha H, Levin-Zaidman S, Dadosh T, Bohan B, V. Gawali M, Dasgupta B, Lapidot T, Cancelas JA (2020) Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 136:2607–2619

    Article  PubMed  Google Scholar 

  64. Zhang DC, Chen R, Cai YH, Wang JJ, Yin C, Zou K (2020) Hyperactive reactive oxygen species impair function of porcine Sertoli cells via suppression of surface protein ITGB1 and connexin-43. Zool Res 41:203–207

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li H, Brodsky S, Kumari S, Valiunas V, Brink P, Kaide J, Nasjletti A, Goligorsky MS (2002) Paradoxical overexpression and translocation of connexin43 in homocysteine-treated endothelial cells. Am J Physiol Heart Circ Physiol 282:H2124–H2133

    Article  CAS  PubMed  Google Scholar 

  66. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F et al (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244

    Article  CAS  PubMed  Google Scholar 

  67. Kozoriz MG, Church J, Ozog MA, Naus CC, Krebs C (2010) Temporary sequestration of potassium by mitochondria in astrocytes. J Biol Chem 285:31107–31119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodríguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K et al (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756

    Article  CAS  PubMed  Google Scholar 

  69. Pecoraro M, Pala B, Di Marcantonio MC, Muraro R, Marzocco S, Pinto A, Mincione G, Popolo A (2020) Doxorubicin-induced oxidative and nitrosative stress: mitochondrial connexin 43 is at the crossroads. Int J Mol Med 46:1197–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pecoraro M, Pinto A, Popolo A (2020) Trastuzumab-induced cardiotoxicity and role of mitochondrial connexin43 in the adaptive response. Toxicol in Vitro 67:104926

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 81974502, 81671293, and 81302750), Natural Science Foundation of Hunan Province (No. 2020JJ3061), and Hunan Provincial Department of Education Innovation Platform Open Fund Project (No. 17K100).

Author information

Authors and Affiliations

Authors

Contributions

XYM designed and revised the manuscript. KZ, QWG, and XYZ wrote the manuscript. QXX, XXY, and HHZ contributed to literature arrangement and the generation of figures and tables. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to **ao-Yuan Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Guan, QW., Zhou, XY. et al. The mutual interplay of redox signaling and connexins. J Mol Med 99, 933–941 (2021). https://doi.org/10.1007/s00109-021-02084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02084-0

Keywords

Navigation