Log in

Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Free radicals and other oxidants are critical determinants of the cellular signaling pathways involved in the pathogenesis of several human diseases including inflammatory diseases. Numerous studies have demonstrated the protective effects of antioxidant enzymes during inflammation by elimination of free radicals. The superoxide dismutase (SOD), an antioxidant enzyme, plays an essential pathogenic role in the inflammatory diseases by not only catalyzing the conversion of the superoxide to hydrogen peroxide and oxygen but also affecting immune responses. There are three distinct isoforms of SOD, which distribute in different cellular compartments such as cytosolic SOD1, mitochondrial SOD2, and extracellular SOD3. Many studies have investigated the anti-oxidative effects of SOD3 in the inflammatory diseases. Herein, in this review, we focus on the current understanding of SOD3 as a therapeutic protein in inflammatory diseases such as skin, autoimmune, lung, and cardiovascular inflammatory diseases. Moreover, the mechanism(s) by which SOD3 modulates immune responses and signal initiation in the pathogenesis of the diseases will be further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  1. Adachi T, Yamada H, Yamada Y, Morihara N, Yamazaki N, Murakami T, Futenma A, Kato K, Hirano K (1996) Substitution of glycine for arginine-213 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface. Biochem J 313(Pt 1):235–239

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Agrawal DK, Shao Z (2010) Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep 10:39–48

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54:3533–3544

    CAS  PubMed  Google Scholar 

  4. Allhorn M, Arve S, Brüggemann H, Lood R (2016) A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci Rep 6:36412

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Asikainen TM, Huang T-T, Taskinen E, Levonen A-L, Carlson E, Lapatto R, Epstein CJ, Raivio KO (2002) Increased sensitivity of homozygous Sod2 mutant mice to oxygen toxicity. Free Radic Biol Med 32:175–186

    CAS  PubMed  Google Scholar 

  6. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2:110

    PubMed  PubMed Central  Google Scholar 

  7. Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A 92:6264–6268

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen EP, Bittner HB, Davis RD, Trigt PV, Folz RJ (1998) Physiologic effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 115:450–459

    CAS  PubMed  Google Scholar 

  9. Chia-Wen K, Hsiao-Ling C, Min-Yu T, Chuan-Mu C (2019) Serum and urinary SOD3 in patients with type 2 diabetes: comparison with early chronic kidney disease patients and association with development of diabetic nephropathy. Am J Physiol Ren Physiol 316:F32–F41

    Google Scholar 

  10. Chu Y, Piper R, Richardson S, Watanabe Y, Patel P, Heistad Donald D (2006) Endocytosis of extracellular superoxide dismutase into endothelial cells. Arterioscler Thromb Vasc Biol 26:1985–1990

    CAS  PubMed  Google Scholar 

  11. Cooper GS, Miller FW, Germolec DR (2002) Occupational exposures and autoimmune diseases. Int Immunopharmacol 2:303–313

    CAS  PubMed  Google Scholar 

  12. D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248

    PubMed  PubMed Central  Google Scholar 

  13. Dahl M, Bowler RP, Juul K, Crapo JD, Levy S, Nordestgaard BG (2008) Superoxide dismutase 3 polymorphism associated with reduced lung function in two large populations. Am J Respir Crit Care Med 178:906–912

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Delaney C, Wright RH, Tang J-R, Woods C, Villegas L, Sherlock L, Savani RC, Abman SH, Nozik-Grayck E (2015) Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension. Pediatr Res 78:634

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edlund A, Edlund T, Hjalmarsson K, Marklund SL, Sandström J, Strömqvist M, Tibell L (1992) A non-glycosylated extracellular superoxide dismutase variant. Biochem J 288(Pt 2):451–456

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang T-T (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    CAS  PubMed  Google Scholar 

  17. Folz RJ, Peno-Green L, Crapo JD (1994) Identification of a homozygous missense mutation (Arg to Gly) in the critical binding region of the human EC-SOD gene (SOD3) and its association with dramatically increased serum enzyme levels. Hum Mol Genet 3:2251–2254

    CAS  PubMed  Google Scholar 

  18. Fujita H, Fujishima H, Chida S, Takahashi K, Qi Z, Kanetsuna Y, Breyer MD, Harris RC, Yamada Y, Takahashi T (2009) Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20:1303–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249

    CAS  PubMed  Google Scholar 

  20. Gaurav R, Varasteh JT, Weaver MR, Jacobson SR, Hernandez-Lagunas L, Liu Q, Nozik-Grayck E, Chu HW, Alam R, Nordestgaard BG et al (2017) The R213G polymorphism in SOD3 protects against allergic airway inflammation. JCI Insight 2:e95072

    PubMed Central  Google Scholar 

  21. Gongora MC, Lob HE, Landmesser U, Guzik TJ, Martin WD, Ozumi K, Wall SM, Wilson DS, Murthy N, Gravanis M et al (2008) Loss of Extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am J Pathol 173:915–926

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorecki M, Beck Y, Hartman JR, Fischer M, Weiss L, Tochner Z, Slavin S, Nimrod A (1991) Recombinant human superoxide dismutases: production and potential therapeutical uses. Free Radic Res Commun 12:401–410

    PubMed  Google Scholar 

  23. Heidenreich R, Röcken M, Ghoreschi K (2009) Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 90:232–248

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hjalmarsson K, Marklund SL, Engström A, Edlund T (1987) Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci U S A 84:6340–6344

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong Yu A, Lim Ji H, Kim Min Y, Kim Y, Park Hoon S, Kim Hyung W, Choi Bum S, Chang Yoon S, Kim Hye W, Kim T-Y et al (2018) Extracellular superoxide dismutase attenuates renal oxidative stress through the activation of adenosine monophosphate-activated protein kinase in diabetic nephropathy. Antioxid Redox Signal 28:1543–1561

    PubMed  Google Scholar 

  26. Hu L, Zachariae ED, Larsen UG, Vilhardt F, Petersen SV (2019) The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response. Redox Biol 26:101268–101268

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Iyama S, Okamoto T, Sato T, Yamauchi N, Sato Y, Sasaki K, Takahashi M, Tanaka M, Adachi T, Kogawa K et al (2001) Treatment of murine collagen-induced arthritis by ex vivo extracellular superoxide dismutase gene transfer. Arthritis Rheum 44:2160–2167

    CAS  PubMed  Google Scholar 

  28. Jong Woong P, Wen-Ning Q, Yongting C, Igor Z, John QL, Long-En C, James RU, Rodney JF (2005) Skeletal muscle reperfusion injury is enhanced in extracellular superoxide dismutase knockout mouse. Am J Physiol Heart Circ Physiol 289:H181–H187

    Google Scholar 

  29. Karlsson K, Sandström J, Edlund A, Edlund T, Marklund SL (1993) Pharmacokinetics of extracellular-superoxide dismutase in the vascular system. Free Radic Biol Med 14:185–190

    CAS  PubMed  Google Scholar 

  30. Kim H-Y, Sah SK, Choi SS, Kim T-Y (2018) Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes. Life Sci 210:201–208

    CAS  PubMed  Google Scholar 

  31. Kim Y, Jeon Y-J, Ryu K, Kim T-Y (2017) Zinc(II) ion promotes anti-inflammatory effects of rhSOD3 by increasing cellular association. BMB Rep 50:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim Y, Kim BH, Lee H, Jeon B, Lee YS, Kwon M-J, Kim T-Y (2011) Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways. Free Radic Biol Med 51:1985–1995

    CAS  PubMed  Google Scholar 

  33. Kimura F, Hasegawa G, Obayashi H, Adachi T, Hara H, Ohta M, Fukui M, Kitagawa Y, Park H, Nakamura N et al (2003) Serum extracellular superoxide dismutase in patients with type 2 diabetes. Diabetes Care 26:1246–1250

    CAS  PubMed  Google Scholar 

  34. Kobylecki CJ, Afzal S, Nordestgaard BG (2015) Genetically low antioxidant protection and risk of cardiovascular disease and heart failure in diabetic subjects. EBioMedicine 2:2010–2015

    PubMed  PubMed Central  Google Scholar 

  35. Kuo C-W, Shen C-J, Tung Y-T, Chen H-L, Chen Y-H, Chang W-H, Cheng K-C, Yang S-H, Chen C-M (2015) Extracellular superoxide dismutase ameliorates streptozotocin-induced rat diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life Sci 135:77–86

    CAS  PubMed  Google Scholar 

  36. Kwon M-J, Jeon Y-J, Lee K-Y, Kim T-Y (2012a) Superoxide dismutase 3 controls adaptive immune responses and contributes to the inhibition of ovalbumin-induced allergic airway inflammation in mice. Antioxid Redox Signal 17:1376–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwon MJ, Jihye H, Byung Hak K, Yun Sang L, Tae-Yoon K (2012b) Superoxide dismutase 3 suppresses hyaluronic acid fragments mediated skin inflammation by inhibition of toll-like receptor 4 signaling pathway: superoxide dismutase 3 inhibits reactive oxygen species-induced trafficking of toll-like receptor 4 to lipid rafts. Antioxid Redox Signal 16:297–313

    CAS  PubMed  Google Scholar 

  38. La Rosa M, Lionetti E, Reibaldi M, Russo A, Longo A, Leonardi S, Tomarchio S, Avitabile T, Reibaldi A (2013) Allergic conjunctivitis: a comprehensive review of the literature. Ital J Pediatr 39:18–18

    PubMed  PubMed Central  Google Scholar 

  39. Lee HJ, Kim B-M, Shin S, Kim T-Y, Chung S-H (2017) Superoxide dismutase 3 attenuates experimental Th2-driven allergic conjunctivitis. Clin Immunol 176:49–54

    CAS  PubMed  Google Scholar 

  40. Lee YS, Cheon I-S, Kim B-H, Kwon M-J, Lee H-W, Kim T-Y (2013) Loss of extracellular superoxide dismutase induces severe il-23-mediated skin inflammation in mice. J Invest Dermatol 133:732–741

    CAS  PubMed  Google Scholar 

  41. Lee YS, Choi J-H, Lee J-H, Lee H-W, Lee W, Kim WT, Kim T-Y (2016) Extracellular superoxide dismutase ameliorates house dust mite-induced atopic dermatitis-like skin inflammation and inhibits mast cell activation in mice. Exp Dermatol 25:630–635

    CAS  PubMed  Google Scholar 

  42. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591

    CAS  PubMed  Google Scholar 

  43. Liu Y, Steenland K, Rong Y, Hnizdo E, Huang X, Zhang H, Shi T, Sun Y, Wu T, Chen W (2013) Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: a 44-year cohort study of 34,018 workers. Am J Epidemiol 178:1424–1433

    PubMed  PubMed Central  Google Scholar 

  44. Lowes MA, Suárez-Fariñas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Makarov SS (2001) NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res 3:200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A 79:7634–7638

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Masaki H (2010) Role of antioxidants in the skin: Anti-aging effects. J Dermatol Sci 58:85–90

    CAS  PubMed  Google Scholar 

  48. Mouradian GC, Gaurav R, Pugliese S, El Kasmi K, Hartman B, Hernandez-Lagunas L, Stenmark KR, Bowler RP, Nozik-Grayck E (2017) Superoxide dismutase 3 R213G single-nucleotide polymorphism blocks murine bleomycin-induced fibrosis and promotes resolution of inflammation. Am J Respir Cell Mol Biol 56:362–371

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen CT, Sah SK, Zouboulis CC, Kim T-Y (2018) Inhibitory effects of superoxide dismutase 3 on Propionibacterium acnes-induced skin inflammation. Sci Rep 8:4024–4024

    PubMed  PubMed Central  Google Scholar 

  50. Ookawara T, Kizaki T, Takayama E, Imazeki N, Matsubara O, Ikeda Y, Suzuki K, Li Ji L, Tadakuma T, Taniguchi N et al (2002) Nuclear translocation of extracellular superoxide dismutase. Biochem Biophys Res Commun 296:54–61

    CAS  PubMed  Google Scholar 

  51. Petersen SV, Olsen DA, Kenney JM, Oury TD, Valnickova Z, Thøgersen IB, Crapo JD, Enghild JJ (2005) The high concentration of Arg213-->Gly extracellular superoxide dismutase (EC-SOD) in plasma is caused by a reduction of both heparin and collagen affinities. Biochem J 385:427–432

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thøgersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD et al (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710

    CAS  PubMed  Google Scholar 

  53. Petersen SV, Thøgersen IB, Valnickova Z, Nielsen MS, Petersen JS, Poulsen ET, Jacobsen C, Oury TD, Moestrup SK, Crapo JD et al (2010) The concentration of extracellular superoxide dismutase in plasma is maintained by LRP-mediated endocytosis. Free Radic Biol Med 49:894–899

    CAS  PubMed  Google Scholar 

  54. Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101–101

    PubMed  PubMed Central  Google Scholar 

  55. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28:219–242

    CAS  PubMed  Google Scholar 

  56. Regan E, Flannelly J, Bowler R, Tran K, Nicks M, Carbone BD, Glueck D, Heijnen H, Mason R, Crapo J (2005) Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthritis Rheum 52:3479–3491

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Regan EA, Bowler RP, Crapo JD (2008) Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil 16:515–521

    CAS  PubMed  Google Scholar 

  58. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ross AD, Banda NK, Muggli M, Arend WP (2004) Enhancement of collagen-induced arthritis in mice genetically deficient in extracellular superoxide dismutase. Arthritis Rheum 50:3702–3711

    CAS  PubMed  Google Scholar 

  60. Sah SK, Agrahari G, Nguyen CT, Kim Y-S, Kang K-S, Kim T-Y (2018) Enhanced therapeutic effects of human mesenchymal stem cells transduced with superoxide dismutase 3 in a murine atopic dermatitis-like skin inflammation model. Allergy 73:2364–2376

    CAS  PubMed  Google Scholar 

  61. Sah SK, Park KH, Yun C-O, Kang K-S, Kim T-Y (2015) Effects of human mesenchymal stem cells transduced with superoxide dismutase on imiquimod-induced psoriasis-like skin inflammation in mice. Antioxid Redox Signal 24:233–248

    PubMed  Google Scholar 

  62. Salvemini, D., Mazzon, E., Dugo, L., Serraino, I., Angela De, S., Caputi, A.P., and Cuzzocrea, S. (2001). Amelioration of joint disease in a rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetic. Arthritis Rheum 44, 2909-2921.

  63. Sandström J, Nilsson P, Karlsson K, Marklund SL (1994) 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J Biol Chem 269:19163–19166

    PubMed  Google Scholar 

  64. Schneider MP, Sullivan JC, Wach PF, Boesen EI, Yamamoto T, Fukai T, Harrison DG, Pollock DM, Pollock JS (2010) Protective role of extracellular superoxide dismutase in renal ischemia/reperfusion injury. Kidney Int 78:374–381

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi Y, Hu X, Cheng J, Zhang X, Zhao F, Shi W, Ren B, Yu H, Yang P, Li Z et al (2019) A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun 10:1914

    PubMed  PubMed Central  Google Scholar 

  66. Siedlinski M, van Diemen CC, Postma DS, Vonk JM, Boezen HM (2009) Superoxide dismutases, lung function and bronchial responsiveness in a general population. Eur Respir J 33:986–992

    CAS  PubMed  Google Scholar 

  67. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM (2006) All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992–1999. Diabetologia 49:660–666

    CAS  PubMed  Google Scholar 

  68. Sudhahar V, Urao N, Oshikawa J, McKinney RD, Llanos RM, Mercer JFB, Ushio-Fukai M, Fukai T (2013) Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes 62:3839–3850

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, Ellinghaus E, Barker JN, Chandran V, Dand N et al (2017) Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun 8:15382–15382

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106:360–368

    PubMed  PubMed Central  Google Scholar 

  71. Vuokko LK, James DC (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167:1600–1619

    Google Scholar 

  72. Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387:1109–1122

    Google Scholar 

  73. Weisiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3582–3592

    CAS  PubMed  Google Scholar 

  74. Yamada H, Yamada Y, Adachi T, Goto H, Ogasawara N, Futenma A, Kitano M, Hirano K, Kato K (1995) Molecular analysis of extracellular-superoxide dismutase gene associated with high level in serum. Jpn J Hum Genet 40:177

    CAS  PubMed  Google Scholar 

  75. Yao H, Arunachalam G, Hwang J-w, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A 107:15571–15576

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu DH, Yi JK, Yuh HS, Park Sj, Kim HJ, Bae KB, Ji YR, Kim NR, Park SJ, Kim DH et al (2012) Over-expression of extracellular superoxide dismutase in mouse synovial tissue attenuates the inflammatory arthritis. Exp Mol Med 44:529

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zelko IN, Zhu J, Roman J (2018) Role of SOD3 in silica-related lung fibrosis and pulmonary vascular remodeling. Respir Res 19:221

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zouboulis CC, Eady A, Philpott M, Goldsmith LA, Orfanos C, Cunliffe WC, Rosenfield R (2005) What is the pathogenesis of acne? Exp Dermatol 14:143–143

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Chelsea Anita Kelland (Department of Internal Medicine, University of California at Davis, USA) and Minh Tan Nguyen (School of Dentistry, University of California at Los Angeles, USA) for their critical reading and useful discussions.

Funding

This work was supported by Nguyen Tat Thanh University (CTN-2019) and Ho Chi Minh City Open University (NHN-2019). The funding body played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Cuong T Nguyen searched the literatures and wrote the manuscript. Nguyen H Nguyen searched the literatures and participated in discussion. Gia-Buu Tran revised the manuscript.

Corresponding author

Correspondence to Cuong Thach Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.H., Tran, GB. & Nguyen, C.T. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J Mol Med 98, 59–69 (2020). https://doi.org/10.1007/s00109-019-01845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01845-2

Keywords

Navigation