Log in

Diffusion tensor imaging indices as biomarkers for cognitive changes following paediatric radiotherapy: a systematic review and meta-analysis

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) can detect subtle manifestations of white matter (WM) injury following paediatric radiotherapy, which may be a potential biomarker for cognitive changes. This study aimed to synthesise the relationships between DTI indices and cognitive changes following paediatric radiotherapy through systematic review and meta-analysis. PubMed and Scopus electronic databases were used to identify eligible studies. Quality assessment was performed using the National Institute of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Information on demographics, DTI changes, and associations to cognitive outcomes were extracted. Meta-analyses were performed on DTI changes in specific anatomical locations. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed in the preparation of this report. Eighteen studies were included (median study size: 21; range 18–146). 17/18 studies showed significant cognitive decline following irradiation. Meta-analyses found significant cognitive changes within patient’s group of acute lymphoblastic leukaemia (ALL; standard mean differences [SMD] = −0.075, P = 0.01) and brain tumours (BT; SMD = −1.037, P ≤ 0.001) compared to control/baseline. Both groups also had significantly lower fractional anisotropy (FA) scores in the corpus callosum (ALL: SMD = −0.979, P = 0.002; BT: SMD = −1.025, P < 0.001). Decreased FA was consistently associated with cognitive decline. Correlation on WMFA integrity to cognitive domains was statistically significant (Z = 9.86, P < 0.001) with a large effect size (r = 0.52). White matter tract integrity of the corpus callosum measured with FA has the potential to be a biomarker for radiotherapy-related cognitive decline. Inclusion of DTI in follow-up imaging should be encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 3
Fig. 3

Similar content being viewed by others

References

  1. Yahya N, Manan HA (2021) Neurocognitive impairment following proton therapy for paediatric brain tumour: a systematic review of post-therapy assessments. Support Care Cancer 29:3035–47. https://doi.org/10.1007/s00520-020-05808-z

    Article  PubMed  Google Scholar 

  2. Schulte F, Kunin-Batson AS, Olson-Bullis BA et al (2019) Social attainment in survivors of pediatric central nervous system tumors: a systematic review and meta-analysis from the Children’s Oncology Group. J Cancer Surviv 13(6):921–931. https://doi.org/10.1007/s11764-019-00808-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saatci D, Thomas A, Botting B, Sutcliffe AG (2019) Educational attainment in childhood cancer survivors: a meta-analysis. Arch Dis Child. https://doi.org/10.1136/archdischild-2019-317594

    Article  PubMed  Google Scholar 

  4. Frost MH, Sloan JA (2002) Quality of life measurements: a soft outcome—or is it? Am J Manag Care 8:S574–S579

    PubMed  Google Scholar 

  5. Yahya N, Manan HA (2021) Diffusion tensor imaging indices to predict cognitive changes following adult radiotherapy. Eur J Cancer Care 30(1):e13329. https://doi.org/10.1111/ecc.13329

    Article  Google Scholar 

  6. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S (2016) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13(1):52–64. https://doi.org/10.1038/nrneurol.2016.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ryan NP, Genc S, Beauchamp MH et al (2017) White matter microstructure predicts longitudinal social cognitive outcomes after paediatric traumatic brain injury: a diffusion tensor imaging study. Psychol Med 48(4):679–691. https://doi.org/10.1017/s0033291717002057

    Article  PubMed  Google Scholar 

  8. Rogalski E, Stebbins GT, Barnes CA et al (2012) Age-related changes in parahippocampal white matter integrity: A diffusion tensor imaging study. Neuropsychologia 50(8):1759–1765. https://doi.org/10.1016/j.neuropsychologia.2012.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fünfschilling U, Supplie LM, Mahad D et al (2013) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    Article  Google Scholar 

  10. Lee Y, Morrison BM, Li Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filley CM, Fields RD (2016) White matter and cognition: making the connection. J Neurophysiol 116(5):2093–2104. https://doi.org/10.1152/jn.00221.2016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose–volume effects in the brain. Int J Radiat Oncol 76(3):20–S7. https://doi.org/10.1016/j.ijrobp.2009.02.091

    Article  Google Scholar 

  13. Kassubek R, Gorges M, Westhoff MA, Ludolph AC, Kassubek J, Müller HP (2017) Cerebral microstructural alterations after radiation therapy in high-grade glioma: a diffusion tensor imaging-based study. Front Neurol. https://doi.org/10.3389/fneur.2017.00286

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki Y, Matsuzawa H, Kwee IL, Nakada T (2003) Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed 16:257–260

    Article  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P)2015 statement. Syst Rev. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wallace BC, Dahabreh IJ et al (2012) Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw 49(5):1–15

    Article  Google Scholar 

  20. Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison and validation of Meta-Essentials: a free and simple tool for meta-analysis. Res Synth Methods 8(4):537–553. https://doi.org/10.1002/jrsm.1260

    Article  PubMed  PubMed Central  Google Scholar 

  21. Partanen M, Bouffet E, Laughlin S et al (2018) Early changes in white matter predict intellectual outcome in children treated for posterior fossa tumours. Neuroimage Clin 20:697–704. https://doi.org/10.1016/j.nicl.2018.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  22. Glass JO, Ogg RJ, Hyun JW, Harreld JH et al (2017) Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro-Oncology. https://doi.org/10.1093/neuonc/nox062

    Article  PubMed  PubMed Central  Google Scholar 

  23. Redmond KJ, Hildreth M, Sair HI et al (2018) Association of neuronal injury in the genu and body of corpus callosum after cranial irradiation in children with impaired cognitive control: a prospective study. Int J Radiat Oncol Biol Phys 101(5):1234–1242. https://doi.org/10.1016/j.ijrobp.2018.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rueckriegel SM, Bruhn H, Thomale UW, Driever PH (2015) Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivors. Pediatr Blood Cancer 62:1252–1258. https://doi.org/10.1002/pbc.25485

    Article  PubMed  Google Scholar 

  25. Follin C, Svärd D, van Westen D et al (2019) Microstructural white matter alterations associated to neurocognitive deficits in childhood leukemia survivors treated with cranial radiotherapy—a diffusion kurtosis study. Acta Oncol 58(7):1021–1028. https://doi.org/10.1080/0284186X.2019.1571279

    Article  CAS  PubMed  Google Scholar 

  26. Schuitema I, Deprez S, Van Hecke W et al (2013) Accelerated aging, decreased white matter integrity, and associated neuropsychological dysfunction 25 years after pediatric lymphoid malignancies. J Clin Oncol 31:3378–3388. https://doi.org/10.1200/JCO.2012.46.7050

    Article  PubMed  Google Scholar 

  27. Edelmann MN, Krull KR, Liu W et al (2014) Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia. Brain 137:2973–2983. https://doi.org/10.1093/brain/awu230

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moxon-Emre I, Farb NAS, Oyefiade AA et al (2019) Facial emotion recognition in children treated for posteriro fossa tumours and typically develo** children: a divergence or predictors. Neuroimage Clin 23:101886. https://doi.org/10.1016/j.nicl.2019.101886

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aukema EJ, Caan MWA, Oudhuis N et al (2009) White matter fractional anisotropy correlated with speed of processing and motor speed in young childhood cancer survivors. Int J Radiat Oncol Biol Phys 74(3):837–843. https://doi.org/10.1016/j.ijrobp.2008.08.060

    Article  PubMed  Google Scholar 

  30. King TZ, Wang L, Mao H (2015) Disruption of white matter integrity in adult survivors of childhood brain tumors: correlated with long-term intellectual outcomes. PLoS ONE 10(7):e131744. https://doi.org/10.1371/journal.pone.0131744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khong PL, Leung L, Fung A et al (2006) White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 24:884–890. https://doi.org/10.1200/JCO.2005.02.4505

    Article  PubMed  Google Scholar 

  32. Smith KM, King TZ, Jayakar R, Morris RD (2014) Reading skill in adult survivors of childhood brain tumor: a theory-based neurocognitive model. Neuropsychology 28(3):448–458. https://doi.org/10.1037/neu0000056

    Article  PubMed  Google Scholar 

  33. Aleksonis HA, Wier R, Pearson MM et al (2019) Associations among diffusion tensor imaging and neurocognitive function in survivors of pediatric brain tumor: a pilot study. Appl Neuropsychol Child. https://doi.org/10.1080/21622965.2019.1613993

    Article  PubMed  Google Scholar 

  34. Palmer SL, Glass JO, Li Y et al (2012) White matter integrity is associated with cognitive processing in patients treated for posterior fossa brain tumor. Neuro-Oncology 14(9):1185–1193. https://doi.org/10.1093/neuonc/nos154

    Article  PubMed  PubMed Central  Google Scholar 

  35. Padovani L, André N, Constine LS, Muracciole X (2012) Neurocognitive function after radiotherapy for paediatric brain tumours. Nat Rev Neurol 8:578–588. https://doi.org/10.1038/nrneurol.2012.182

    Article  CAS  PubMed  Google Scholar 

  36. Ajithkumar T, Price S, Horan G, Burke A, Jefferies S (2017) Prevention of radiotherapy-induced neurocognitive dysfunction in vors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 18:e91–e100

    Article  PubMed  Google Scholar 

  37. Tsang DS, Kim L, Liu ZA et al (2020) Intellectual changes after radiation for children with brain tumors: which brain structures are most important? Neuro-Oncology 23(3):487–197. https://doi.org/10.1093/neuonc/noaa217

    Article  PubMed Central  Google Scholar 

  38. Palmer SL, Reddick WE, Glass JO et al (2010) Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav 4:132–140. https://doi.org/10.1007/s11682-010-9092-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Duc NM (2020) The role of diffusion tensor imaging metrics in the discrimination between cerebellar medulloblastoma and brainstem glioma. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28468

    Article  PubMed  Google Scholar 

  40. Connor M, Karunamuni R, McDonald C et al (2017) Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 123(2):209–217. https://doi.org/10.1016/j.radonc.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen HF, Huang LL, Li HY et al (2020) Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment. CNS Neurosci Ther 26:576–588. https://doi.org/10.1111/cns.13283

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sorg SF, Schiehser DM, Bondi MW et al (2016) White matter microstructural compromise is associated with cognition but not posttraumatic stress disorder symptoms in military veterans with traumatic brain injury. J Head Trauma Rehabil 31:297–230

    Article  PubMed  PubMed Central  Google Scholar 

  43. McKenna BS, Theilmann RJ, Sutherland AN et al (2015) Fusing functional MRI and diffusion tensor imaging measures of brain function and structure to predict working memory and processing speed performance among inter-episode bipolar patients. J Int Neuropsychol Soc 21:330–341

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tuladhar AM, van Norden AG, de Laat KF et al (2015) White matter integrity in small vessel disease is related to cognition. Neuroimage Clin 7:518–524

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Groot JC, de Leeuw FE, Oudkerk M et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151. https://doi.org/10.1002/1531-8249(200002)47:2〈145:aid-ana3〉3.3.co;2‑g

    Article  PubMed  Google Scholar 

  46. Scantlebury N, Strother D, Bouffet E et al (2016) White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor. Neuropsychology 30(4):425–438. https://doi.org/10.1037/neu0000258

    Article  PubMed  Google Scholar 

  47. Brinkman TM, Reddick WE, Luxton J et al (2012) Cerebral white matter integrity and executive function in adult survivors of childhood medulloblastoma. Neuro-Oncology 14:iv25–iv36. https://doi.org/10.1093/neuonc/nos214

    Article  PubMed  PubMed Central  Google Scholar 

  48. Voon NS, Manan HA, Yahya N (2021) Cognitive Decline following Radiotherapy of Head and Neck Cancer: Systematic Review and Meta-Analysis of MRI Correlates. Cancers 13(24):6191. https://doi.org/10.3390/cancers13246191

    Article  PubMed  PubMed Central  Google Scholar 

  49. Voon NS, Lau FN, Zakaria R et al (2021) MRI-based brain structural changes following radiotherapy of Nasopharyngeal carcinoma: a systematic review. Cancer Radiother 25(1):62–71. https://doi.org/10.1016/j.canrad.2020.07.008

    Article  CAS  PubMed  Google Scholar 

  50. Ding Z, Zhang H, Lv XF et al (2018) Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp 39(1):407–27. https://doi.org/10.1002/hbm.23852

    Article  PubMed  Google Scholar 

  51. Law N, Bouffet E, Laughlin S et al (2011) Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. Neuroimage 56:2238–2248. https://doi.org/10.1016/j.neuroimage.2011.03.06

    Article  PubMed  Google Scholar 

  52. Yahya N, Manan HA (2019) Utilisation of diffusion tensor imaging in Intracranial radiotherapy and radiosurgery planning for white matter dose optimization: a systematic review. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.06.027

    Article  PubMed  Google Scholar 

  53. O’Sullivan M, Morris RG, Huckstep B et al (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 75(3):441–447. https://doi.org/10.1136/jnnp.2003.014910

    Article  PubMed  PubMed Central  Google Scholar 

  54. Turken A, Whitfield-Gabrieli S, Bammer R et al (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42(2):1032–1044. https://doi.org/10.1016/j.neuroimage.2008.03.057

    Article  PubMed  Google Scholar 

  55. Deprez S, Amant F, Yigit R et al (2011) Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp 32(3):480–493. https://doi.org/10.1002/hbm.21033

    Article  PubMed  Google Scholar 

  56. Welzel T, Niethammer A, Mende U et al (2008) Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: first results of a prospective study. Am J Neuroradiol 29(2):379–383. https://doi.org/10.3174/ajnr.A0797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duan F, Cheng J, Jiang J et al (2016) Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: a diffusion tensor imaging study. Eur Arch Otorhinolaryngol 273(12):4453–4459

    Article  PubMed  Google Scholar 

  58. Agbahiwe H, Rashid A, Horska A et al (2017) A prospective study of cerebral frontal lobe, and temporal lobe volume and neuropsychological performance in children with primary brain tumors treated with cranial radiation. Cancer 123(1):161–168. https://doi.org/10.1002/cncr.30313

    Article  PubMed  Google Scholar 

  59. Bradshaw M, Wefel J (2014) The neuropsychology of oncology. In: Parsons M, Hammeke T (eds) Clinical neuropsychology: a pocket handbook for assessment, 3rd edn. American Psychological Association, Washington DC, pp 313–337

    Chapter  Google Scholar 

  60. Moxon-Emre I, Bouffet E, Taylor MD et al (2014) Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. J Clin Oncol 32:1760–1768

    Article  PubMed  Google Scholar 

  61. Moxon-Emre I, Bouffet E, Taylor MD et al (2016a) Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J Neurosurg Pediatr 18:29–40

    Article  PubMed  Google Scholar 

  62. Yahya N, Manan H (2020) Neurocognitive impairment following proton therapy for paediatric brain tumour: a systematic review of post-therapy assessments. Support Care Cancer. https://doi.org/10.1007/s00520-020-05808-z

    Article  PubMed  Google Scholar 

  63. Schagen SB, Muller MJ, Boogerd W et al (2002) Late effects of adjuvant chemtherapy on cognitive function: a follow-up study in breast cancer patients. Ann Oncol 13(9):1387–1397

    Article  CAS  PubMed  Google Scholar 

  64. Winocur G, Vardy J, Binns MA, Kerr L, Tannock I (2006) The effects of the anti-cancer drugs, methotrexate and 5‑fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 85(1):66–75

    Article  CAS  PubMed  Google Scholar 

  65. Uh J, Merchant TE, Conklin HM et al (2021) Diffusion tensor imaging-based analysis of baseline neurocognitive function and post-treatment white matter changes in pediatric patients with craniopharyngioma treated with surgery and proton therapy. Int J Radiat Oncol Biol Phys 109(2):515–526. https://doi.org/10.1016/j.ijrobp.2020.08.060

    Article  PubMed  Google Scholar 

  66. Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 221:550–556

    Article  CAS  PubMed  Google Scholar 

  67. Sjoerd BV, Derek KJ, Max AV, Alexander L (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55:1566–1576

    Article  Google Scholar 

  68. Wheeler-Kingshot CAM, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260. https://doi.org/10.1002/mrm.21965

    Article  Google Scholar 

  69. Watts R, Thomas A, Filippi CG, Nickerson JP, Freeman K (2014) Potholes and molehills: bias in the diagnostic performance of diffusion-tensor imaging in concussion. Radiology 272(1):217–223. https://doi.org/10.1148/radiol.14131856

    Article  PubMed  Google Scholar 

  70. Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111(46):16574–16579. https://doi.org/10.1073/pnas.1405672111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Higher Learning (Malaysia) – Fundamental Research Grant (FRGS/1/2021/SS03/UKM/02/1) to NY and HAM and the National University of Malaysia under grants FF-2020-013 to HAM, NAY and NSV and GP-2021-K017963 to NAY.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, literature search and data analysis were performed by Noor Shatirah Voon, Noorazrul Yahya and Hanani A. Manan. The first draft of the manuscript was written by Noor Shatirah Voon and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Noorazrul Yahya.

Ethics declarations

Conflict of interest

N.S. Voon, H.A. Manan and N. Yahya declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voon, N.S., Manan, H.A. & Yahya, N. Diffusion tensor imaging indices as biomarkers for cognitive changes following paediatric radiotherapy: a systematic review and meta-analysis. Strahlenther Onkol 198, 409–426 (2022). https://doi.org/10.1007/s00066-022-01905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-01905-6

Keywords

Navigation