Log in

2022 ESC/ERS-Leitlinien zur Diagnostik und Therapie der pulmonalen Hypertonie

Ein fokussierter Überblick

2022 ESC/ERS guidelines on the diagnostics and treatment of pulmonary hypertension

A focussed review

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die pulmonale Hypertonie (PH) ist ein hämodynamischer Zustand, der durch eine Reihe zugrunde liegender Erkrankungen bedingt sein kann. Die Pathophysiologie ist komplex und betrifft diverse Organsysteme, sodass ein multidisziplinärer Ansatz bezüglich einer differenzialdiagnostischen Abklärung und Behandlung notwendig ist. Dieser Übersichtsartikel bietet einen Überblick über die wichtigsten Änderungen der aktualisierten ESC(European Society of Cardiology)/ERS(European Respiratory Society)-Leitlinie zur Diagnostik und Therapie der PH im Vergleich zur letzten Version aus 2015. Ein spezieller Fokus liegt dabei (i) auf den geänderten hämodynamischen Definitionen der PH (inkl. genereller Definition, prä- vs. postkapilläre PH, isoliert postkapilläre PH [IpcPH], kombiniert post- und präkapilläre PH [CpcPH]), (ii) auf der klinischen Präsentation und Klassifikation der PH, (iii) auf dem diagnostischen Vorgehen sowie (iv) auf speziellen Aspekten der pulmonal arteriellen Hypertonie (PAH; Gruppe 1), der PH bei zugrunde liegender Linksherz- (Gruppe 2) oder Lungenerkrankung (Gruppe 3) und der chronisch thromboembolischen PH (CTEPH; Gruppe 4). Für Letztere werden das spezielle diagnostische Vorgehen sowie der multimodale Therapieansatz dargelegt. Zudem werden für jede der PH-Gruppen klinisch relevante Aspekte und Neuerungen kurz und prägnant dargestellt.

Abstract

Pulmonary hypertension (PH) is a hemodynamic state that can be caused by a variety of underlying conditions. The pathophysiology is complex and can involve several organ systems, requiring a multidisciplinary approach to differential diagnostics and management. This review article provides a comprehensive overview of the most important changes in the updated 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines on the diagnostics and treatment of pulmonary hypertension, as compared to the previous 2015 version. A special focus is on (i) updated hemodynamic definitions of PH, including general definition, precapillary vs. postcapillary PH, isolated postcapillary PH (IpcPH), combined postcapillary and precapillary PH (CpcPH), (ii) the clinical presentation and classification of PH, (iii) the diagnostic approach as well as (iv) specific aspects of pulmonary arterial hypertension (PAH, group 1), including risk assessment, treatment and PAH with comorbidities, PH associated with left heart (group 2) or lung disease (group 3), and chronic thromboembolic pulmonary hypertension (CTEPH, group 4). Regarding the latter, the specific diagnostic algorithm and the multimodal approach to treatment are presented. Finally, for each of the PH groups, clinically relevant aspects and innovations are briefly and concisely presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J 37:67–119

    Article  Google Scholar 

  2. Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43:3618–3731

    Article  Google Scholar 

  3. Maron BA, Hess E, Maddox TM et al (2016) Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: Insights from the Veterans Affairs clinical assessment, reporting, and tracking program. Circulation 133:1240–1248

    Article  Google Scholar 

  4. Maron BA, Brittain EL, Hess E et al (2020) Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 8:873–884

    Article  Google Scholar 

  5. Kovacs G, Berghold A, Scheidl S et al (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  Google Scholar 

  6. Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM (2020) Systemic consequences of pulmonary hypertension and right heart failure. Circulation 141:678–693

    Article  Google Scholar 

  7. Hoeper MM, Humbert M, Souza R et al (2016) A global view of pulmonary hypertension. Lancet Respir Med 4:306–322

    Article  Google Scholar 

  8. Huston JH, Maron BA, French J et al (2019) Association of mild echocardiographic pulmonary hypertension with mortality and right ventricular function. JAMA Cardiol 4:1112–1121

    Article  Google Scholar 

  9. Kylhammar D, Kjellström B, Hjalmarsson C et al (2018) A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J 39:4175–4181

    Article  Google Scholar 

  10. Hoeper MM, Kramer T, Pan Z et al (2017) Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 50(2):1700740

    Article  Google Scholar 

  11. Boucly A, Weatherald J, Savale L et al (2017) Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J 50(2):1700889

    Article  Google Scholar 

  12. Chin K, Sitbon O, Doelberg M et al (2021) Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J Am Coll Cardiol 78:1393–1403

    Article  CAS  Google Scholar 

  13. Hoeper MM, Pausch C, Olsson KM et al (2021) COMPERA 2.0: A refined 4‑strata risk assessment model for pulmonary arterial hypertension. Eur Respir J 4:2102311

    Google Scholar 

  14. Boucly A, Weatherald J, Savale L et al (2022) External validation of a refined four-stratum risk assessment score from the French pulmonary hypertension registry. Eur Respir J 59(6):2102419

    Article  Google Scholar 

  15. GRIPHON Investigators, Sitbon O, Channick R, Chin KM et al (2015) Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med 373:2522–2533

    Article  Google Scholar 

  16. REPLACE investigators, Hoeper MM, Ghofrani HA, Al-Hiti H et al (2021) Switching from phosphodiesterase‑5 inhibitors to riociguat in patients with pulmonary arterial hypertension: Results from the REPLACE study. Lancet Respir Med 9:573–584

    Article  Google Scholar 

  17. Hoeper MM, Dwivedi K, Pausch C et al (2022) Phenoty** of idiopathic pulmonary arterial hypertension: A registry analysis. Lancet Respir Med 10:937–948

    Article  CAS  Google Scholar 

  18. Galiè N, Barbera JA, Frost A et al (2015) Initial use of Ambrisentan plus Tadalafil in pulmonary arterial hypertension. N Engl J Med 379:834–844

    Article  Google Scholar 

  19. Opitz CF, Hoeper MM, Gibbs JS et al (2016) Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol 68:368–378

    Article  Google Scholar 

  20. McLaughlin VV, Vachiery JL, Oudiz R et al (2019) Patients with pulmonary arterial hypertension with and without cardiovascular risk factors: Results from the AMBITION trial. J Heart Lung Transplant 38:1286–1295

    Article  Google Scholar 

  21. Rosenkranz S, Channick R, Chin KM et al (2022) Impact of comorbidities on selexipag treatment effect in patients with pulmonary arterial hypertension: insights from the GRIPHON study. Eur J Heart Fail 24:205–214

    Article  CAS  Google Scholar 

  22. Rosenkranz S, Pausch C, Coghlan JG et al (2023) Risk stratification and response to therapy in patients with pulmonary arterial hypertension and comorbidities: a COMPERA analysis. J Heart Lung Transplant 42:102–114. https://doi.org/10.1016/j.healun.2022.10.003

    Article  Google Scholar 

  23. Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954

    Article  Google Scholar 

  24. Vachiéry JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M, Coghlan G, Chazova I, De Marco T (2019) Pulmonary hypertension due to left heart disease. Eur Respir J. https://doi.org/10.1183/13993003.01897-2018

    Article  Google Scholar 

  25. Guazzi M, Naeije R (2017) Pulmonary hypertension in heart failure: Pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 69:1718–1734

    Article  Google Scholar 

  26. Vanderpool RR, Saul M, Nouraie M et al (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in patients with heart failure and preserved ejection fraction. JAMA Cardiol 3:298–306

    Article  Google Scholar 

  27. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  Google Scholar 

  28. Vahanian A, Beyersdorf F, Praz F et al (2022) 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 43:561–632

    Article  Google Scholar 

  29. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB, CHAMPION Trial Study Group (2016) Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387:453–461

    Article  Google Scholar 

  30. Shavelle DM, Desai AS, Abraham WT et al (2020) Lower rates of heart failure and all-cause hospitalizations during pulmonary artery pressure-guided therapy for ambulatory heart failure: One-year outcomes from the CardioMEMS post-approval study. Circ Heart Fail 13(8):e6863

    Article  Google Scholar 

  31. MEMS-HF Investigators, Angermann C, Assmus B, Anker SD et al (2020) Pulmonary artery pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF). Eur J Heart Fail 22:1891–1901

    Article  Google Scholar 

  32. Aßmus B, Angermann CE, Alkhlout B et al (2022) Treatment response to heart failure management guided by remote pulmonary-artery-pressure-monitoring depends on presence and severity of pulmonary hypertension. Eur J Heart Fail 24:2320–2330

    Google Scholar 

  33. Hoendermis E, Liu LCY, Hummel YM et al (2015) Effects of sildenafil on invasive hemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 36:2565–2573

    Article  CAS  Google Scholar 

  34. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase‑5 inhibition in a 1-year study. Circulation 124:164–174

    Article  CAS  Google Scholar 

  35. Dachs TM, Duca F, Rettl R et al (2022) Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: the haemoDYNAMIC trial. Eur Heart J 43:3402–3413

    Article  Google Scholar 

  36. Vachiery JL, Delcroix M, Al Hiti H et al (2018) Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J 51(2):1701886

    Article  Google Scholar 

  37. SERENADE Investigators, Shah SJ, Bonderman D, Borlaug BA et al (2022) A study to evaluate whether macitentan is an effective and safe treatment for patients with heart failure with preserved ejection fraction and pulmonary vascular disease (SERENADE). Presented at HFA Heart Failure 2022, Madrid (Abstract)

  38. Nathan SD, Barbera JA, Gaine SP et al (2019) Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J 53(1):1801914

    Article  CAS  Google Scholar 

  39. Zeder K, Avian A, Bachmaier G et al (2021) Elevated pulmonary vascular resistance predicts mortality in COPD patients. Eur Respir J 58(2):2100944

    Article  Google Scholar 

  40. Kovacs G, Avian A, Bachmaier G et al (2022) Severe pulmonary hypertension in COPD: Impact on survival and diagnostic approach. Chest 162:202–212

    Article  Google Scholar 

  41. Olsson KM, Hoeper MM, Pausch C et al (2021) Pulmonary vascular resistance predicts mortality in patients with pulmonary hypertension associated with interstitial lung disease: Results from the COMPERA registry. Eur Respir J 58(2):2101483

    Article  Google Scholar 

  42. Waxman A, Restrepo-Jaramillo R, Thenappan T et al (2021) Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med 384:325–334

    Article  CAS  Google Scholar 

  43. Nathan SD, Behr J, Collard HR et al (2019) Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): a randomised, placebo-controlled phase 2b study. Lancet Respir Med 7:780–790

    Article  CAS  Google Scholar 

  44. Kim NH, Delcroix M, Jais X, Madani MM, Matsubara H, Mayer E, Ogo T, Tapson VF, Ghofrani HA, Jenkins DP (2019) Chronic thromboembolic pulmonary hypertension. Eur Respir J 53(1):1801915

    Article  CAS  Google Scholar 

  45. Delcroix M, Torbicki A, Gopalan D et al (2021) ERS statement on chronic thrombo-embolic pulmonary hypertension. Eur Respir J 57(6):2002828

    Article  Google Scholar 

  46. FOCUS Investigators, Valerio L, Mavromanoli AC, Barco S et al (2022) Implications of persistent functional impairment after acute pulmonary embolism: FOCUS, a prospective multicentre observational cohort study. Eur Heart J 43:3387-3398. https://doi.org/10.1093/eurheartj/ehac206

    Article  Google Scholar 

  47. Konstantinides SV, Meyer G, Becattini C et al (2020) 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41:543–603

    Article  Google Scholar 

  48. Jaïs X, Brenot P, Bouvaist H et al (2022) Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): a multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study. Lancet Respir Med 10:961–971

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rosenkranz.

Ethics declarations

Interessenkonflikt

S. Rosenkranz hat Honorare für Vorträge und/oder Beratertätigkeiten erhalten von: Abbott, Acceleron, Actelion, Aerovate, Altavant, AOP Orphan, AstraZeneca, Bayer, Boehringer Ingelheim, Edwards, Ferrer, Gossamer, Janssen, MSD, United Therapeutics und Vifor; seine Institution hat Forschungsgelder erhalten von: Actelion, AstraZeneca, Bayer und Janssen.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenkranz, S. 2022 ESC/ERS-Leitlinien zur Diagnostik und Therapie der pulmonalen Hypertonie. Herz 48, 23–30 (2023). https://doi.org/10.1007/s00059-022-05155-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05155-1

Schlüsselwörter

Keywords

Navigation