Log in

Effects of offset design on the accuracy of bracket placement with a guided bonding device

Auswirkungen des Offset-Designs auf die Genauigkeit der Bracket-Positionierung mit einem geführten Bonding-Gerät

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Background

This study aimed to evaluate the effects of offset design on the accuracy of bracket placement for computer-aided design and computer-aided manufacturing (CAD/CAM)-guided bonding devices (GBDs) in vitro.

Methods

Eight dental models were selected. Seven types of GBDs were designed and three-dimensionally (3D) printed for each model, including one without any offset and the other six with translation offsets (TF) and expansion offsets (EF) of 0.05, 0.10, and 0.15 mm, respectively. After the brackets were bonded on the models using the different GBDs in vitro, linear and angular deviations of the bracket positions were evaluated.

Results

In total, 56 GBDs were printed, and 784 brackets were bonded using the GBDs. No misfit between the dentitions and the devices was found during the bonding process. With increasing offset, more brackets were gingivally positioned with the frequencies ranging from 61.61 to 76.79% for the TF groups and from 58.93 to 78.57% for the EF groups. The vertical deviations of the brackets increased from 0.100 to 0.168 mm and from 0.117 to 0.150 mm in the TF and the EF group, respectively, as offset increased. No statistically significant difference was found in the vertical deviation between most of the TF and EF groups with the same offset value (p > 0.05). With respect to angulation, the mean absolute deviations were 0.881, 1.083, and 1.029° in the 0.05-mm, 0.10-mm, and 0.15-mm EF groups, respectively, which were greater than those in the corresponding TF groups (0.799, 0.847, and 0.806°). Similarly, with increasing offset, the mean absolute deviations for rotation in the EF groups (0.847, 0.998, and 1.138°) were greater than those in the TF groups (0.853, 0.946, and 0.896°). Compared with the 0.15-mm TF group, greater angulations (p < 0.05) and rotations (p < 0.01) were found in the 0.15-mm EF group.

Conclusions

Offset designs influenced the precision of vertical bracket placement with GBDs. Due to the smaller deviations in angulation and rotation of bracket placement, TF is preferred over EF for GBDs. Moreover, the differences between TF and EF also need to be considered in the design of other dental CAD/CAM devices.

Zusammenfassung

Hintergrund

Ziel dieser Studie war es, die Auswirkungen des Offset-Designs auf die Genauigkeit der Bracketpositionierung bei CAD/CAM-geführten Klebevorrichtungen (GBDs) in vitro zu untersuchen.

Methoden

Es wurden 8 Zahnmodelle ausgewählt. Für jedes Modell wurden 7 Arten von GBDs entworfen und dreidimensional (3-D) gedruckt, darunter ein Modell ohne Offset, die anderen 6 mit Translationsoffsets (TF) und Expansionsoffsets (EF) von 0,05, 0,10 bzw. 0,15 mm. Nachdem die Brackets mit den verschiedenen GBDs in vitro auf die Modelle geklebt worden waren, wurden die linearen und angulären Abweichungen der Bracketpositionen bewertet.

Ergebnisse

Insgesamt wurden 56 GBDs gedruckt, 784 Brackets wurden mit den GBDs geklebt. Während des Klebevorgangs wurde keine Fehlanpassung zwischen den Zähnen und den Geräten festgestellt. Mit zunehmendem Offset wurden mehr Brackets gingival positioniert. Die Häufigkeit lag zwischen 61,61 und 76,79 % bei den TF- und zwischen 58,93 und 78,57 % bei den EF-Gruppen. Die vertikalen Abweichungen der Brackets nahmen in der TF- und der EF-Gruppe mit zunehmendem Offset von 0,100 auf 0,168  mm bzw. von 0,117 auf 0,150 mm zu. Es wurde kein statistisch signifikanter Unterschied in der vertikalen Abweichung zwischen den meisten TF- und EF-Gruppen mit demselben Offset-Wert festgestellt (p < 0,05). Hinsichtlich der Angulation betrugen die mittleren absoluten Abweichungen 0,881, 1,083 und 1,029° in den 0,05-, 0,10- bzw. 0,15-mm-EF-Gruppen und waren damit größer als in den entsprechenden TF-Gruppen (0,799, 0,847 und 0,806°). Ebenso waren mit zunehmendem Offset die mittleren absoluten Abweichungen für die Rotation in den EF-Gruppen (0,847, 0,998 und 1,138°) größer als in den TF-Gruppen (0,853, 0,946 und 0,896°). Im Vergleich zur 0,15-mm-TF-Gruppe wurden in der 0,15-mm-EF-Gruppe größere Angulationen (p < 0,05) und Rotationen (p < 0,01) festgestellt.

Schlussfolgerungen

Offset-Designs beeinflussten die Präzision der vertikalen Bracketpositionierung mit GBDs. Aufgrund der geringeren Abweichungen bei Angulation und Rotation der Bracketpositionierung ist TF bei GBDs gegenüber EF vorzuziehen. Darüber hinaus sind die Unterschiede zwischen TF und EF auch bei der Konstruktion anderer zahnmedizinischer CAD/CAM-Geräte zu berücksichtigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

CAD/CAM:

Computer-aided design and computer-aided manufacturing

EF:

Expansion offset

GBDs:

Guided bonding devices

SD:

Standard deviation

TF:

Translation offset

References

  1. Gange P (2015) The evolution of bonding in orthodontics. Am J Orthod Dentofacial Orthop 147(4 Suppl):S56–S63. https://doi.org/10.1016/j.ajodo.2015.01.011

    Article  PubMed  Google Scholar 

  2. Schmid J, Brenner D, Recheis W, Hofer-Picout P, Brenner M, Crismani AG (2018) Transfer accuracy of two indirect bonding techniques-an in vitro study with 3D scanned models. Eur J Orthod 40(5):549–555. https://doi.org/10.1093/ejo/cjy006

    Article  PubMed  Google Scholar 

  3. Oh JY, Park JW, Baek SH (2012) Surgery-first approach in class III open-bite. J Craniofac Surg 23(4):e283–e287. https://doi.org/10.1097/SCS.0b013e31825055b1

    Article  PubMed  Google Scholar 

  4. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–529. https://doi.org/10.1038/sj.bdj.2015.914

    Article  CAS  PubMed  Google Scholar 

  5. Spitz A, Gribel BF, Marassi C (2018) CAD/CAM technology for digital indirect bonding. J Clin Orthod 52(11):621–628

    PubMed  Google Scholar 

  6. Xue C, Xu H, Guo Y et al (2020) Accurate bracket placement using a computer-aided design and computer-aided manufacturing-guided bonding device: an in vivo study. Am J Orthod Dentofacial Orthop 157(2):269–277. https://doi.org/10.1016/j.ajodo.2019.03.022

    Article  PubMed  Google Scholar 

  7. Niu Y, Zeng Y, Zhang Z, Xu W, **ao L (2021) Comparison of the transfer accuracy of two digital indirect bonding trays for labial bracket bonding. Angle Orthod 91(1):67–73. https://doi.org/10.2319/013120-70.1

    Article  PubMed  Google Scholar 

  8. Castilla AE, Crowe JJ, Moses JR, Wang M, Ferracane JL, Covell DA Jr (2014) Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques. Angle Orthod 84(4):607–614. https://doi.org/10.2319/070113-484.1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grunheid T, Lee MS, Larson BE (2016) Transfer accuracy of vinyl polysiloxane trays for indirect bonding. Angle Orthod 86(3):468–474. https://doi.org/10.2319/042415-279.1

    Article  PubMed  Google Scholar 

  10. Ye N, Wu T, Dong T, Yuan L, Fang B, **a L (2019) Precision of 3D-printed splints with different dental model offsets. Am J Orthod Dentofacial Orthop 155(5):733–738. https://doi.org/10.1016/j.ajodo.2018.09.012

    Article  PubMed  Google Scholar 

  11. Lim JH, Bayarsaikhan E, Shin SH, Nam NE, Shim JS, Kim JE (2021) Effects of groove sealing of the posterior occlusal surface and offset of the internal surface on the internal fit and accuracy of implant placements using 3D-printed surgical guides: an in vitro study. Polymers 13(8):1236. https://doi.org/10.3390/polym13081236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cole D, Bencharit S, Carrico CK, Arias A, Tufekci E (2019) Evaluation of fit for 3D-printed retainers compared with thermoform retainers. Am J Orthod Dentofacial Orthop 155(4):592–599. https://doi.org/10.1016/j.ajodo.2018.09.011

    Article  PubMed  Google Scholar 

  13. Metzger MC, Hohlweg-Majert B, Schwarz U et al (2008) Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(2):e1–e7. https://doi.org/10.1016/j.tripleo.2007.07.040

    Article  PubMed  Google Scholar 

  14. Kim J, Chun YS, Kim M (2018) Accuracy of bracket positions with a CAD/CAM indirect bonding system in posterior teeth with different cusp heights. Am J Orthod Dentofacial Orthop 153(2):298–307. https://doi.org/10.1016/j.ajodo.2017.06.017

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The GBD and the fabrication process in this study are protected by licenses of invention patents (No. 201610142088.X, No. 202010389160.5), and a license of utility model patent (No. 202020757112.2) in the People’s Republic of China.

Funding

This study was supported financially by the Project for Interdisciplinary Innovation of West China Hospital of Stomatology, Sichuan University, China (Grant No. RD-03-202108), the Project for New Technology of West China Hospital of Stomatology, Sichuan University, China (Grant No. LCYJ-2022-YY-3), and Clinical Research Project for Young Scholar of Chinese Orthodontic Society, Chinese Stomatological Association (Grant No. COS-C2021-02).

Author information

Authors and Affiliations

Authors

Contributions

BL participated in the design of the study, performed data analysis, and was a major contributor in preparing the original draft. PW participated in the design of the study and the registration protocol, interpreted data, organized figures, and drafted the manuscript. HX participated in the design of the study and contributed to manuscript revision. RG contributed to software operation and data analyses. XH offered critical advice to improve the study design. DB was the supervisor and also contributed to editing the manuscript. CX led the study design and prototype fabrication, participated in figure draft, and contributed to manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaoran Xue D.D.S..

Ethics declarations

Conflict of interest

B. Li, P. Wang, H. Xu, R. Gu, X. Han, D. Bai and C. Xue declare that they have no competing interests. None of the authors have financial interests that are directly or indirectly related to the work submitted for publication.

Ethical standards

Ethical approval was received from the local institutional review committee of West China Hospital of Stomatology, Sichuan University (WCHSIRB-D-2021-219). Consent to participate: Written informed consent to participate was obtained from every participant. Consent for publication: Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and material

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, P., Xu, H. et al. Effects of offset design on the accuracy of bracket placement with a guided bonding device. J Orofac Orthop 85, 250–259 (2024). https://doi.org/10.1007/s00056-022-00424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-022-00424-4

Keywords

Schlüsselwörter

Navigation