Log in

Synthesis, structure-activity relationship and evaluation of antifungal activity of tryptanthrin derivatives against drug-resistant Candida albicans

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

With the increasing of Candida albicans infections year by year, and the widespread use of azole drugs, especially fluconazole has led to the emergence of drug resistance. Therefore, new antifungal agents are urgent needed. In this work, we synthesized a series of tryptanthrin derivatives, and all compounds were evaluated for antifungal activities against Candida albicans in vitro. The results indicated that most compounds combined with fluconazole showed good antifungal activity against drug-resistant Candida albicans. Especially, compound 5b combined with fluconazole had an excellent synergistic effect, with MIC50 value of 0.94 μg/mL, and the FICI value of 0.005. Further mechanism study demonstrated that compound 5b significantly inhibited the hyphal growth and biofilm formation of Candida albicans. Compound 5b combined with fluconazole could be considered as a novel antifungal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem. 2021;221:113557 https://doi.org/10.1016/j.ejmech.2021.113557

    Article  CAS  PubMed  Google Scholar 

  2. Heintz-Buschart A, Eickhoff H, Hohn E, Bilitewski U. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. J Biotechnol. 2013;164:137–42. https://doi.org/10.1016/j.jbiotec.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Zuo R, Garrison AT, Basak A, et al. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents. 2016;48:208–11. https://doi.org/10.1016/j.ijantimicag.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  4. Lignell A, Löwdin E, Cars O, Sanglard D, Sjölin J. Voriconazole-induced inhibition of the fungicidal activity of amphotericin B in Candida strains with reduced susceptibility to voriconazole: an effect not predicted by the MIC value alone. Antimicrob Agents Chemother. 2011;55:1629–37. https://doi.org/10.1128/aac.00791-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benjamin I, Benson CU, Adalikwu SA, Nduoma FA, Akor FO, Odey MO, et al. Investigating the potential of thiazolyl carbohydrazides derivatives as anti-Candida albicans agents: an intuition from molecular modelling, pharmacokinetic evaluation, and molecular docking analysis. CHPHI. 2023;7:100275 https://doi.org/10.1016/j.chphi.2023.100275

    Article  Google Scholar 

  6. Zhang M, Yan H, Lu M, Wang D, Sun S. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence. Int J Antimicrob Agents. 2020;55:105804 https://doi.org/10.1016/j.ijantimicag.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  7. Hill JA, Cowen LE. Using combination therapy to thwart drug resistance. Future Microbiol. 2015;10:1719–26. https://doi.org/10.2217/fmb.15.68

    Article  CAS  PubMed  Google Scholar 

  8. Sun W, Wang D, Yu C, Huang X, Li X, Sun S. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence. Int J Antimicrob Agents. 2017;50:399–405. https://doi.org/10.1016/j.ijantimicag.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents. 2014;43:395–402. https://doi.org/10.1016/j.ijantimicag.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Huang LQ, Dong CL, He YH, Guan Z. Visible light‐induced radical‐radical coupling: one‐pot synthesis of 6‐Benzyl‐6‐hydroxyindolo [2, 1‐b] quinazolin‐12 (6H)‐ones from Isatins and Potassium Benzyl Trifluoroborates. Adv Synth Catal. 2022;364:3225–37. https://doi.org/10.1002/adsc.202200750

    Article  CAS  Google Scholar 

  11. Deryabin PI, Moskovkina TV, Shevchenko LS, Kalinovskii AI. Synthesis and antimicrobial activity of tryptanthrin adducts with ketones. Russ J Org Chem. 2017;53:418–22. https://doi.org/10.1134/S1070428017030174

    Article  CAS  Google Scholar 

  12. Beyrati M, Forutan M, Hasaninejad A, Rakovský E, Babaei S, Maryamabadi A, et al. One-pot, four-component synthesis of spiroindoloquinazoline derivatives as phospholipase inhibitors. Tetrahedron. 2017;73:5144–52. https://doi.org/10.1016/j.tet.2017.07.005

    Article  CAS  Google Scholar 

  13. Kamal A, Reddy BV, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, et al. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorganic Med Chem Lett. 2015;25:3867–72. https://doi.org/10.1016/j.bmcl.2015.07.057

    Article  CAS  Google Scholar 

  14. Kaur R, Manjal SK, Rawal RK, Kumar K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorganic Med Chem. 2017;25:4533–52. https://doi.org/10.1016/j.bmc.2017.07.003

    Article  CAS  Google Scholar 

  15. Brandao P, Burke AJ. Tryptanthrin and its derivatives in drug discovery: synthetic insights. Synthesis. 2022;54:4235–45. https://doi.org/10.1055/s-0040-1719901

    Article  CAS  Google Scholar 

  16. Moskovkina TV, Kalinovskii AI, Martyyas EA, Anisimov MM. Synthesis and properties of 6, 6-di (indol-3-yl)-indolo [2, 1-b] quinazolin-12 (6 H)-one and its 2, 8-dimethyl and 2, 8-dibromo derivatives. Chem Heterocycl Compd. 2013;49:452–6. https://doi.org/10.1007/s10593-013-1267-4

    Article  CAS  Google Scholar 

  17. Amara R, Awad H, Chaker D, et al. Conversion of isatins to tryptanthrins, heterocycles endowed with a myriad of bioactivities. Eur J Org Chem. 2019;2019:5302–12. https://doi.org/10.1002/ejoc.201900352

    Article  CAS  Google Scholar 

  18. Qin TH, Liu JC, Zhang JY, Tang LX, Ma YN, Yang R. Synthesis and biological evaluation of new 2-substituted-4-amino-quinolines and-quinazoline as potential antifungal agents. Bioorganic Med Chem Lett. 2022;72:128877 https://doi.org/10.1016/j.bmcl.2022.128877

    Article  CAS  Google Scholar 

  19. Setiawan A, Widodo ADW, Endraswari PD. Comparison of ciprofloxacin, cotrimoxazole, and doxycycline on Klebsiella pneumoniae: time-kill curve analysis. Ann Med Surg. 2022;84:104841 https://doi.org/10.1016/j.amsu.2022.104841

    Article  Google Scholar 

  20. Yang S, Peng X, Ren B, Luo Y, Xu X. Small molecule II-6s synergises with fluconazole against Candida albicans. Int J Antimicrob Agents. 2023;62:106820 https://doi.org/10.1016/j.ijantimicag.2023.106820

    Article  CAS  PubMed  Google Scholar 

  21. Money NP. Action and inertia in the study of hyphal growth. Fungal Biol Rev. 2022;41:24–30. https://doi.org/10.1016/j.fbr.2021.09.001

    Article  CAS  Google Scholar 

  22. De Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JC, Junqueira JC. Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia. 2020;185:415–24. https://doi.org/10.1007/s11046-020-00445-w

    Article  PubMed  Google Scholar 

  23. Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012;3:315–22. https://doi.org/10.4161/trns.22281

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shin DS, Eom YB. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can J Microbiol. 2019;65:713–21. https://doi.org/10.1139/cjm-2019-0155

    Article  CAS  PubMed  Google Scholar 

  25. Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, et al. C. albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents. 2022;60:106673 https://doi.org/10.1016/j.ijantimicag.2022.106673

    Article  CAS  PubMed  Google Scholar 

  26. Arockiaraj M, Singh G, Sree Marupalli S, Rajeshkumar V. Visible‐light‐induced aerobic intramolecular Cyclization of (2‐Aminophenyl)(1H‐indol‐1‐yl) methanones: direct access to bioactive Tryptanthrin and its derivatives. Adv Synth and Catal. 2023;365:1654–9. https://doi.org/10.1002/adsc.202300195

    Article  CAS  Google Scholar 

  27. Bai **ao. Structural modification of natural product trypanthrin and its inhibitory effect on tumor cell proliferation[D]. Northwestern University. 2021.

  28. Moskovkina TV, Kalinovskii AI, Makhan’kov VV. Synthesis of tryptanthrin (couroupitine) derivatives by reaction of substituted isatins with phosphoryl chloride. Russ J Org Chem. 2012;48:123–6. https://doi.org/10.1134/S1070428012010204

    Article  CAS  Google Scholar 

  29. Chen L, Liu W, Wang Y, et al. Highly efficient metal-free synthesis and antibacterial activities of tryptanthrin derivatives. Synthetic Chem. 2022;30:917–24.

    Google Scholar 

  30. Wang C, Zhang L, Ren A, Lu P, Wang Y. Cu-catalyzed synthesis of tryptanthrin derivatives from substituted indoles. Org lett. 2013;15:2982–5. https://doi.org/10.1021/ol401144m

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Yunnan Fundamental Research Projects (grant NO. 202101AZ070001-048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Ni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Jiang, L., Liu, R. et al. Synthesis, structure-activity relationship and evaluation of antifungal activity of tryptanthrin derivatives against drug-resistant Candida albicans. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03270-8

Keywords

Navigation