Log in

Characterization of the CO release properties of a common CO donor, CORM-401, in the context of its application in studying CO biology

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In studying CO for its pathophysiological roles, four metal/borane-carbonyl complexes have been widely used as CO-releasing molecules (CORMs) because of their commercial availability. The CO-release properties of CORM-2, CORM-3, and CORM-A1 have been rigorously characterized. In this study, we characterize CORM-401 for its CO-donating ability under various conditions relevant to studying CO biology. First, with regard to the “intrinsic” CO-release ability of CORM-401 and factors that could influence such ability, we found significant effects of added reagents such as thiol, peroxide, and dithionite on CO-release yields and rate. The variable nature of CO release from CORM-401 indicates the need for predetermining CO production yield and rate under the same conditions before biology experiments. Second, because of the commercial availability of CORM-401 in DMSO stock solution, we characterized its stability in such a preparation and found significantly diminished CO-release capacity of CORM-401 after exposing to DMSO or aqueous solution. Third, because carboxyhemoglobin (COHb) is an important indicator of the ability for a CO donor to supply CO in animal model work, we characterized the property for CORM-401 to elevate COHb. Fourth, quality assurance of such a metal complex is important to ensure consistency in results. Our findings indicate that the unstable nature of CORM-401 presents a quality assurance issue for end users. All these combined with the previously reported chemical reactivity of CORM-401could lead to intractable scenarios in obtaining meaningful results using CORM-401 that can be reasonably attributed to CO in biology experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57:585–630. https://doi.org/10.1124/pr.57.4.3

    Article  CAS  PubMed  Google Scholar 

  2. De La Cruz LKC, Wang B. Carbon monoxide production: in health and in sickness. In: Wang B, Otterbein LE, editors. Carbon Monoxide in Drug Discovery: Basics, Pharmacology, and Therapeutic Potential. Wiley Series in Drug Discovery and Development: John Wiley and Sons, Hoboken, New Jersey; 2022. 302–18

  3. Coburn RF. The carbon monoxide body stores. Ann N Y Acad Sci. 1970;174:11–22

    Article  CAS  PubMed  Google Scholar 

  4. Wang B, Otterbein L. Carbon monoxide in drug discovery: basics, pharmacology, and therapeutic potential. 1 ed. Wiley Series in Drug Discovery and Development. Wiley; 2022

  5. Kashfi K, Patel KK. Carbon monoxide and its role in human physiology: a brief historical perspective. Biochem Pharmacol. 2022;204:115230. https://doi.org/10.1016/j.bcp.2022.115230

    Article  CAS  PubMed  Google Scholar 

  6. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev. 2010;9:728–43. https://doi.org/10.1038/nrd3228

    Article  CAS  Google Scholar 

  7. Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: the unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol. 2023;214:115642. https://doi.org/10.1016/j.bcp.2023.115642

    Article  CAS  PubMed  Google Scholar 

  8. Santos-Silva T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romão CC, Romão MJ. CORM-3 reactivity toward proteins: the crystal structure of a Ru(II) dicarbonyl−lysozyme complex. J Am Chem Soc. 2011;133:1192–5. https://doi.org/10.1021/ja108820s

    Article  CAS  PubMed  Google Scholar 

  9. Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, et al. Carbon-monoxide-releasing molecule-2 (CORM-2)’ is a misnomer: ruthenium toxicity, not CO release, accounts for its antimicrobial effects. Antioxidants. 2021;10:915. https://doi.org/10.3390/antiox10060915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McLean S, Mann BE, Poole RK. Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. Anal Biochem. 2012;427:36–40. https://doi.org/10.1016/j.ab.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  11. Seixas JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, et al. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO. Dalton Trans. 2015;44:5058–75. https://doi.org/10.1039/c4dt02966f

    Article  CAS  PubMed  Google Scholar 

  12. Desmard M, Foresti R, Morin D, Dagouassat M, Berdeaux A, Denamur E, et al. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules. Antioxid Redox Signal. 2012;16:153–63. https://doi.org/10.1089/ars.2011.3959

    Article  CAS  PubMed  Google Scholar 

  13. Bauer N, Yang X, Yuan Z, Wang B. Reassessing CORM-A1: redox chemistry and idiosyncratic CO-releasing characteristics of the widely used carbon monoxide donor. Chem Sci. 2023;14:3215–28. https://doi.org/10.1039/d3sc00411b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, et al. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol. 2018;18:114–23. https://doi.org/10.1016/j.redox.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan Z, Yang X, Wang B. Redox and catalase-like activities of four widely used carbon monoxide releasing molecules (CO-RMs). Chem Sci. 2021;12:13013–20. https://doi.org/10.1039/d1sc03832j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan Z, Yang X, Ye Y, Tripathi R, Wang B. Chemical reactivities of two widely used ruthenium-based CO-releasing molecules with a range of biologically important reagents and molecules. Anal Chem. 2021;93:5317–26. https://doi.org/10.1021/acs.analchem.1c00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein M, Neugebauer U, Gheisari A, Malassa A, Jazzazi TMA, Froehlich F, et al. IR spectroscopic methods for the investigation of the CO release from CORMs. J Phys Chem. 2014;118:5381–90. https://doi.org/10.1021/jp503407u

    Article  CAS  Google Scholar 

  18. Yang X, Lu W, Wang M, Tan C, Wang B. CO in a pill”: towards oral delivery of carbon monoxide for therapeutic applications. J Control Release. 2021;338:593–609. https://doi.org/10.1016/j.jconrel.2021.08.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Scapens D, et al. [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 2011;40:4230–5. https://doi.org/10.1039/C1DT10125K

    Article  CAS  PubMed  Google Scholar 

  20. Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, et al. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem pharmacol. 2016;102:64–77. https://doi.org/10.1016/j.bcp.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  21. Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon monoxide signaling: examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharm Rev. 2022;74:825 https://doi.org/10.1124/pharmrev.121.000564

    Article  CAS  PubMed Central  Google Scholar 

  22. Babu D, Leclercq G, Motterlini R, Lefebvre RA. Differential effects of CORM-2 and CORM-401 in murine intestinal epithelial MODE-K cells under oxidative stress. Front Pharmacol. 2017;8:31. https://doi.org/10.3389/fphar.2017.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piantadosi CA. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med. 2008;45:562–9. https://doi.org/10.1016/j.freeradbiomed.2008.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tatlidil D, Ucuncu M, Akdogan Y. Physiological concentrations of albumin favor drug binding. Phys Chem Chem Phys. 2015;17:22678–85. https://doi.org/10.1039/c5cp03583j

    Article  CAS  PubMed  Google Scholar 

  25. Motterlini R, Sawle P, Bains S, Hammad J, Alberto R, Foresti R, et al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2005;19:1–24. https://doi.org/10.1096/fj.04-2169fje

    Article  CAS  Google Scholar 

  26. Guo Y, Stein AB, Wu W-J, Tan W, Zhu X, Li Q-H, et al. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol. 2004;286:H1649–H53. https://doi.org/10.1152/ajpheart.00971.2003

    Article  CAS  PubMed  Google Scholar 

  27. Santos-Silva T, Mukhopadhyay A, D. Seixas J, J.L. Bernardes G, C. Romao C, J. Romao M. Towards improved therapeutic CORMs: understanding the reactivity of CORM-3 with proteins. Cur Med Chem. 2011;18:3361–6. https://doi.org/10.2174/092986711796504583

    Article  CAS  Google Scholar 

  28. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, et al. Cardioprotective actions by a water-soluble carbon monoxide–releasing molecule. Circ Res. 2003;93:2e–8. https://doi.org/10.1161/01.res.0000084381.86567.08

    Article  Google Scholar 

  29. Rimmer RD, Richter H, Ford PC. A photochemical precursor for carbon monoxide release in aerated aqueous media. Inorg Chem. 2010;49:1180–5. https://doi.org/10.1021/ic902147n

    Article  CAS  PubMed  Google Scholar 

  30. Yang X, Mao Q, Wang B. Question of CO’s ability to induce HO-1 expression in cell culture: a comparative study using different CO sources. ACS Chem Biol. 2024;19:725–35. https://doi.org/10.1021/acschembio.3c00750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garashchuk S, Gu B, Mazzuca J. Calculation of the quantum-mechanical tunneling in bound potentials. J Theor Chem. 2014;2014:1–11. https://doi.org/10.1155/2014/240491

    Article  CAS  Google Scholar 

  32. Bruice TC, Lightstone FC. Ground state and transition state contributions to the rates of intramolecular and enzymatic reactions. Acc Chem Res. 1999;32:127–36. https://doi.org/10.1021/ar960131y

    Article  CAS  Google Scholar 

  33. Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev. 2023;43:319–42. https://doi.org/10.1002/med.21927

    Article  PubMed  Google Scholar 

  34. Jencks W. Catalysis in chemistry and enzymology. Dover Publications, Inc.; 1987

  35. Meng F, Alayash AI. Determination of extinction coefficients of human hemoglobin in various redox states. Anal Biochem. 2017;521:11–9. https://doi.org/10.1016/j.ab.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bard JR, Holman JT, Wear JO. An electron paramagnetic resonance study of Mn(II)-chloro complex formation in Ν,Ν-dimethylformamide. Z Naturforsch B. 1969;24:989–93. https://doi.org/10.1515/znb-1969-0810

    Article  CAS  Google Scholar 

  37. Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C. et al. Redox-mediated carbon monoxide release from a manganese carbonyl-implications for physiological CO delivery by CO releasing moieties. R Soc Open Sci. 2021;8:211022. https://doi.org/10.1098/rsos.211022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vummaleti SVC, Branduardi D, Masetti M, De Vivo M, Motterlini R, Cavalli A. Theoretical insights into the mechanism of carbon monoxide (CO) release from co-releasing molecules. Chem Eur J. 2012;18:9267–75. https://doi.org/10.1002/chem.201103617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the National Institutes of Health (DK119202 on CO and colitis; and DK128823 on CO and acute kidney injury), the Georgia Research Alliance Eminent Scholar endowment fund (BW), the Dr. Frank Hannah endowment fund (BW) and internal resources at Georgia State University. NB acknowledges the support of the Brains and Behavior Program through a graduate B&B fellowship. The authors would also like to acknowledge Jordan Dinning and Dr. Todd Harrop at the University of Georgia for their contributions in the EPR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghe Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, N., Mao, Q., Yang, X. et al. Characterization of the CO release properties of a common CO donor, CORM-401, in the context of its application in studying CO biology. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03221-3

Keywords

Navigation