Log in

Structural simplification and ester bond flip** lead to bis-benzodioxole derivatives as potential hypolipidemic and hepatoprotective agent

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of bis-benzodioxole derivatives was designed, synthesized, and evaluated. These target compounds were designed through structure simplification and ester bond flip**. The lipid-lowering activity of these target compounds was preliminarily evaluated in a hyperlipidemic mouse model induced by Triton WR 1339. The results showed that piperonylic acid -6-(3,4-methylenedioxyphenoxy) hexyl ester (T5) possesses notable lipid-lowering properties, reducing triglyceride (TG) and total cholesterol (TC) levels. The dose-dependent study revealed that compound T5 decreased TG and TC more strongly with the increase of dose. It was observed that T5 had considerable effects on decreasing TG, TC and low density lipoprotein cholesterol (LDL-C) levels in hyperlipidemic mice induced by high fat diet (HFD). Meanwhile, T5 was found to have hepatoprotective activity, with the liver aspartate transaminase (AST) and alanine aminotransferase (ALT) significantly decreasing and histopathological observation showing that it inhibited lipids accumulation in the liver and alleviated liver injury. T5 has been shown to stimulate peroxisome proliferator-activated receptor-α (PPAR-α) and suppress hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase in the liver in connection to lipid metabolism. The molecular docking study also revealed that T5 has a high affinity for the active sites of PPAR-α and HMG-CoA reductase. Furthermore, other beneficial activities, including antioxidation and anti-inflammation, were also noted. It is possible that further exploration may result in compound T5 becoming a promising candidate for lipid-lowering therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pastuszak Z, Kozniewska E, Stepien A, Piusinska-Macoch A, Czernicki Z, Koszewski W. Importance rating of risk factors of ischemic stroke in patients over 85 years old in the polish population. Neurol Neurochir Pol. 2018;52:88–93. https://doi.org/10.1016/j.pjnns.2017.11.007.

    Article  PubMed  Google Scholar 

  2. Navar-Boggan AM, Peterson ED, D’Agostino RB, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in Early Adulthood Increases Long-Term Risk of Coronary Heart Disease. Circulation. 2015;131:451–8. https://doi.org/10.1161/CIRCULATIONAHA.114.012477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chevli PA, Freedman BI, Hsu FC, Xu JZ, Rudock ME, Ma LJ, et al. Plasma metabolomic profiling in subclinical atherosclerosis: the Diabetes Heart Study. Cardiovasc Diabetol. 2021;20:215. https://doi.org/10.1186/s12933-021-01419-y.

    Article  CAS  Google Scholar 

  4. Nomura S, Takahashi N, Inami N, Kajiura T, Yamada K, Nakamori H, et al. Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes. Atherosclerosis. 2004;174:329–35. https://doi.org/10.1016/j.atherosclerosis.2004.01.027.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang YP, Wang YX, Zhou JQ, Wang Q, Yan YN, Yang X, et al. The Influence of Diabetes, Hypertension, and Hyperlipidemia on the Onset of Age-Related Macular Degeneration in North China: The Kailuan Eye Study. Biomed Environ Sci. 2022;35:613–21. https://doi.org/10.3967/bes2022.081.

    Article  PubMed  Google Scholar 

  6. Kim E, Yang JW, Park KW, Cho SH. Preventative, but not post-stroke, inhibition of CD36 attenuates brain swelling in hyperlipidemic stroke. J Cereb Blood Flow Metab. 2020;40:885–94. https://doi.org/10.1177/0271678X19850004.

    Article  CAS  PubMed  Google Scholar 

  7. Sahebkar A, Simental-Mendía LE, Watts GF, Serban MC, Banach M, Lipid Blood Pressure M-A. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med. 2017;15:22. https://doi.org/10.1186/s12916-017-0787-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-Associated Side Effects. J Am Coll Cardiol. 2016;67:2395–410. https://doi.org/10.1016/j.jacc.2016.02.071.

    Article  CAS  PubMed  Google Scholar 

  9. Barkas F, Adamidis P, Koutsogianni A-D, Liamis G, Liberopoulos E. Statin-associated side effects in patients attending a lipid clinic: evidence from a 6-year study. Arch Med Sci Atheroscler Dis. 2021;6:e182–e187. https://doi.org/10.5114/amsad.2021.111313.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Demyen M, Alkhalloufi K, Pyrsopoulos NT. Lipid-Lowering Agents and Hepatotoxicity. Clin Liver Dis. 2013;17:699–714. https://doi.org/10.1016/j.cld.2013.07.016.

    Article  PubMed  Google Scholar 

  11. Liu HT, Zhang PP, Ge XX, Wu Q, Han CC, Zhang LY, et al. Optimization of clofibrate with O-desmethyl anetholtrithione lead to a novel hypolipidemia compound with hepatoprotective effect. Bioorg Med Chem Lett. 2022;72:128844 https://doi.org/10.1016/j.bmcl.2022.128844.

    Article  CAS  PubMed  Google Scholar 

  12. Hedrington MS, Davis SN. Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver. Expert Opin Drug Metab Toxicol. 2018;14:671–7. https://doi.org/10.1080/17425255.2018.1483337.

    Article  CAS  PubMed  Google Scholar 

  13. Guo ZR. The modification of natural products for medical use. ACTA Pharm Sin B. 2017;7:119–36. https://doi.org/10.1016/j.apsb.2016.06.003.

    Article  PubMed  Google Scholar 

  14. Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules. 2022;27:349. https://doi.org/10.3390/molecules27020349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narasimhulu CA, Selvarajan K, Litvinov D, Parthasarathy S. Anti-Atherosclerotic and Anti-Inflammatory Actions of Sesame Oil. J Med Food. 2015;18:11–20. https://doi.org/10.1089/jmf.2014.0138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang RJ, Yu Y, Hu SK, Zhang JH, Yang HX, Han B, et al. Sesamin ameliorates hepatic steatosis and inflammation in rats on a high-fat diet via LXRα and PPARα. Nutr Res. 2016;36:1022–30. https://doi.org/10.1016/j.nutres.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  17. **e Y, Liu J, Shi Y, Wang B, Wang X, Wang W, et al. Structural simplification and bioisostere principle lead to Bis-benzodioxole-fibrate derivatives as potential hypolipidemic and hepatoprotective agents. Bioorg Chem. 2021;117:105454. https://doi.org/10.1016/j.bioorg.2021.105454.

    Article  CAS  PubMed  Google Scholar 

  18. Garg G, Patil A, Singh J, Kaushik N, Praksah A, Pal A, et al. Pharmacological evaluation of Convolvulus pluricaulis as hypolipidaemic agent in Triton WR-1339-induced hyperlipidaemia in rats. J Pharm Pharmacol. 2018;70:1572–80. https://doi.org/10.1111/jphp.13004.

    Article  CAS  PubMed  Google Scholar 

  19. Bouhlali EDT, Hmidani A, Bourkhis B, Khouya T, Harnafi H, Filali-Zegzouti Y, et al. Effect of Phoenix dactylifera seeds (dates) extract in triton WR-1339 and high fat diet induced hyperlipidaemia in rats: A comparison with simvastatin. J Ethnopharmacol. 2020;259:112961. https://doi.org/10.1016/j.jep.2020.112961.

    Article  CAS  PubMed  Google Scholar 

  20. Todisco S, Santarsiero A, Convertini P, De Stefano G, Gilio M, Iacobazzi V, et al. PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biol Basel. 2022;11:792. https://doi.org/10.3390/biology11050792.

    Article  CAS  Google Scholar 

  21. Wang H, Sun ZO, Ur-Rehman R, Riaz S, Shen TT, Fan ZC, et al. Apple phlorizin reduce plasma cholesterol by down-regulating hepatic HMG-CoA reductase and enhancing the excretion of fecal sterols. J Funct Foods. 2019;62:103548. https://doi.org/10.1016/j.jff.2019.103548.

    Article  CAS  Google Scholar 

  22. Yang RL, Shi YH, Hao G, Li W, Le GW. Increasing Oxidative Stress with Progressive Hyperlipidemia in Human: Relation between Malondialdehyde and Atherogenic Index. J Clin Biochem Nutr. 2008;43:154–8. https://doi.org/10.3164/jcbn.2008044.

    Article  PubMed  PubMed Central  Google Scholar 

  23. He DQ, Zhang JW, Chen YQ, Li ZL. Tanshinone IIA Alleviates Atherosclerosis Through Inhibition of NF-κB and PPARαE/ABCA1 Signaling Pathways. J Biomed Nanotechnol. 2023;19:1824–31. https://doi.org/10.1166/jbn.2023.3689.

    Article  CAS  Google Scholar 

  24. Kuo DH, Yeh CH, Shieh PC, Cheng KC, Chen FA, Cheng JT. Effect of ShanZha, a Chinese herbal product, on obesity and dyslipidemia in hamsters receiving high-fat diet. J Ethnopharmacol. 2009;124:544–50. https://doi.org/10.1016/j.jep.2009.05.005.

    Article  PubMed  Google Scholar 

  25. Song KH, Lee SH, Kim BY, Park AY, Kim JY. Extracts of Scutellaria baicalensis Reduced Body Weight and Blood Triglyceride in db/db Mice. Phytother Res. 2013;27:244–50. https://doi.org/10.1002/ptr.4691.

    Article  PubMed  Google Scholar 

  26. Chang ST, Chu CM, Hsu TE, Pan KL, Lin PG, Chung CM. Role of ankle-brachial pressure index as a predictor of coronary artery disease severity in patients with diabetes mellitus. Can J Cardiol. 2009;25:E301–E305. https://doi.org/10.1016/S0828-282X(09)70140-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alvarez-Jimenez L, Moreno-Cabañas A, Ramirez-Jimenez M, Morales-Palomo F, Ortega JF, Mora-Rodriguez R. Effectiveness of statins vs. exercise on reducing postprandial hypertriglyceridemia in dyslipidemic population: A systematic review and network meta-analysis. J Sport Health Sci. 2022;11:567–77. https://doi.org/10.1016/j.jshs.2021.07.006.

    Article  PubMed  Google Scholar 

  28. Higashi K, Shige H, Ito T, Nakajima K, Ishikawa T, Nakamura H, et al. Impaired glucose tolerance without hypertriglyceridemia does not enhance postprandial lipemia. Horm Metab Res. 2001;33:101–5. https://doi.org/10.1055/s-2001-12400.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang YW, Xu K, Zhang YQ. Ginsenoside-Mc1 reduces ischemia/reperfusion-induced cardiac arrhythmias through activating JAK2/STAT3 pathway and attenuating oxidative/endoplasmic reticulum stress in hyperlipidemic rats. Turkish J Biochem Turk Biyokimya Derg. 2022;47:491–500. https://doi.org/10.1515/tjb-2021-0171.

    Article  CAS  Google Scholar 

  30. Amrita J, Mahajan M, Bhanwer AJS, Mohan G. Oxidative Stress: An Effective Prognostic Tool for an Early Detection of Cardiovascular Disease in Menopausal Women. Biochem Res Int. 2016;2016:6157605–6157605. https://doi.org/10.1155/2016/6157605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farah R, Jubran F, Khamisy-Farah R. Effects of statins on oxidative stress and primed polymorphonuclear leukocytes in hyperlipidemic patients. Biotech Histochem. 2012;87:519–25. https://doi.org/10.3109/10520295.2012.719243.

    Article  CAS  PubMed  Google Scholar 

  32. Shen YC, Yang T, Guo SJ, Li XO, Chen L, Wang T, et al. Increased Serum ox-LDL Levels Correlated with Lung Function, Inflammation, and Oxidative Stress in COPD. Mediat Inflam. 2013;2013. https://doi.org/10.1155/2013/972347.

  33. Teppner M, Böss F, Ernst B, Pähler A. Application of lipid peroxidation products as biomarkers for flutamide-induced oxidative stress in vitro. Toxicol Lett. 2015;238:53–59. https://doi.org/10.1016/j.toxlet.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  34. Hasanein P, Ghafari-Vahed M, Khodadadi I. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats. Redox Rep. 2017;22:42–50. https://doi.org/10.1080/13510002.2016.1140406.

    Article  CAS  PubMed  Google Scholar 

  35. Ratheesh M, Svenia JP, Asha S, Sandya S, Girishkumar B, Krishnakumar IM. Anti-inflammatory effect of a novel formulation of coconut inflorescence sap against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells by modulating TLR-NF-κB signaling pathway. Toxicol Mech Methods. 2017;27:615–21. https://doi.org/10.1080/15376516.2017.1344339.

    Article  CAS  PubMed  Google Scholar 

  36. Chen S, Sun LX, Zhang JJ, Zhang L, Liu X. Oxygenized Low-Density Lipoprotein-Induced ASMC Dysregulation Depends on circ_0000345-Mediated Regulatory Mechanism. J Atheroscler Thromb. 2022;29:1849–63. https://doi.org/10.5551/jat.63327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li DY, Liu L, Chen HJ, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23:816–21. https://doi.org/10.1161/01.ATV.0000066685.13434.FA.

    Article  CAS  PubMed  Google Scholar 

  38. Krakauer T. Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections. Med Hypotheses. 2015;85:997–1001. https://doi.org/10.1016/j.mehy.2015.08.019.

    Article  CAS  PubMed  Google Scholar 

  39. Lalloyer F, Wouters K, Baron M, Caron S, Vallez E, Vanhoutte J, et al. Peroxisome Proliferator-Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arterioscler Thromb Vasc Biol. 2011;31:1573–U1198. https://doi.org/10.1161/ATVBAHA.110.220525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G, et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-α via inhibition of the protein kinase C signaling pathway. Circ Res. 2006;98:361–9. https://doi.org/10.1161/01.RES.0000202706.70992.95.

    Article  CAS  PubMed  Google Scholar 

  41. Lin HC, Lii CK, Lin AH, Li CC, Tsai CH, Pan SK, et al. Docosahexaenoic acid inhibits TNFα-induced ICAM-1 expression by activating PPARα and autophagy in human endothelial cells. Food Chem Toxicol. 2019;134:110811. https://doi.org/10.1016/j.fct.2019.110811.

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Ip E, dela Peña A, Hou JY, Sesha J, Pera N, et al. COX-2 induction in mice with experimental nutritional steatohepatitis: Role as pro-inflammatory mediator. Hepatology. 2006;43:826–36. https://doi.org/10.1002/hep.21108.

    Article  CAS  PubMed  Google Scholar 

  43. Lee SH, Chung IM, Cha YS, Park Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res. 2010;30:290–6. https://doi.org/10.1016/j.nutres.2010.04.007.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng WY, Song ZY, Li S, Hu MM, Shaukat H, Qin H. Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis. Nutrients. 2021;13:4484 https://doi.org/10.3390/nu13124484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu K, Zhou HL, Wang C, Gong LH, Ma C, Zhang YF, et al. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother Res. 2022;36:2375–93. https://doi.org/10.1002/ptr.7456.

    Article  CAS  PubMed  Google Scholar 

  46. Saberi SEM, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci. 2023;333:122170 https://doi.org/10.1016/j.lfs.2023.122170.

    Article  CAS  Google Scholar 

  47. Dong YH, Zhang JJ, Gao Z, Zhao HJ, Sun GY, Wang XX, et al. Characterization and anti-hyperlipidemia effects of enzymatic residue polysaccharides from Pleurotus ostreatus. Int J Biol Macromol. 2019;129:316–25. https://doi.org/10.1016/j.ijbiomac.2019.01.164.

    Article  CAS  PubMed  Google Scholar 

  48. Mittal G, Chandraiah G, Ramarao P, Kumar M. Pharmacodynamic Evaluation of Oral Estradiol Nanoparticles in Estrogen Deficient (Ovariectomized) High-Fat Diet Induced Hyperlipidemic Rat Model. Pharm Res. 2009;26:218–23. https://doi.org/10.1007/s11095-008-9725-x.

    Article  CAS  PubMed  Google Scholar 

  49. **e YD, Liu JP, Shi YH, Bin W, Wang XP, Wang W, et al. Synthesis and evaluation of new sesamol-based phenolic acid derivatives with hypolipidemic, antioxidant, and hepatoprotective effects. Med Chem Res. 2021;30:1688–702. https://doi.org/10.1007/s00044-021-02770-1.

    Article  CAS  Google Scholar 

  50. **e YD, Liu JP, Shi YH, Wang B, Wang XP, Wang W, et al. The combination of sesamol and clofibric acid moieties leads to a novel potent hypolipidemic agent with antioxidant, anti-inflammatory and hepatoprotective activity. Bioorg Med Chem Lett. 2021;44:128121. https://doi.org/10.1016/j.bmcl.2021.128121.

    Article  CAS  PubMed  Google Scholar 

  51. **e YD, Xu YH, Liu JP, Wang B, Shi YH, Wang W, et al. 1,3-Benzodioxole-based fibrate derivatives as potential hypolipidemic and hepatoprotective agents. Bioorg Med Chem Lett. 2021;43:127898 https://doi.org/10.1016/j.bmcl.2021.127898.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Shaanxi University of Traditional Chinese Medicine Student Innovation and Entrepreneurship Training Program Project (No 202210716107). Shaanxi Province key research and development plan project (No. 2024SF-YBXM-487). Sci-Tech Innovation Talent System Construction Program of Shaanxi University of Chinese Medicine (No. 2023-CXTD-05). Shaanxi Special Support Plan Talent Project. Shaanxi Provincial Administration of Traditional Chinese Medicine “Double Chain Integration” Young and middle-aged Scientific Research and Innovation Team Project (2022-SLRH-YQ-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peifeng Wei, **lian Wei or Shipeng He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03216-0

Keywords

Navigation