Log in

Design, synthesis and antitumor activity evaluation of pyrimidine derivatives containing 4-hydroxypiperidine group

  • Original Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the current study, a series of pyrimidine derivatives containing the 4-hydroxypiperidine group were designed and synthesized, and the antiproliferative activity of these compounds against four human tumor cell lines (MGC-803, PC-3, A549, H1975) was evaluated by MTT method in vitro. Most of the compounds have moderate anti-proliferative activities, among which compound 17i displayed the most excellent anti-proliferative activity, with IC50 value of 3.89 ± 0.57 µM against H1975 cell. Preliminary antitumor mechanism studies revealed that compound 17i could inhibit colony formation and cell migration of H1975 cells. Furthermore, compound 17i induced H1975 cells apoptosis in a dose-dependent manner and H1975 cell cycle arrest in S phase to inhibit cell proliferation. These results indicates that compound 17i could be a promising lead for further studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye T, Han Y, Wang R, Yan P, Chen S, Hou Y, et al. Design, synthesis and biological evaluation of novel 2,4-bismorpholinothieno[3,2-d]pyrimidine and 2-morpholinothieno[3,2-d]pyrimidinone derivatives as potent antitumor agents. Bioorg Chem. 2020;99:103796. https://doi.org/10.1016/j.bioorg.2020.103796

    Article  CAS  PubMed  Google Scholar 

  2. Elmetwally SA, Saied KF, Eissa IH, Elkaeed EB. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg Chem. 2019;88:102944. https://doi.org/10.1016/j.bioorg.2019.102944

    Article  CAS  PubMed  Google Scholar 

  3. Park JH, Ahn SE, Kim S, Kwon MJ, Suh YJ, Kim D. Complete surgical excision is necessary following vacuum-assisted biopsy for breast cancer. Curr Oncol. 2022;29:9357–64. https://doi.org/10.3390/curroncol29120734

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shanmugalingam A, Hitos K, Hegde S, Al-Mashat A, Pathmanathan N, Edirimmane S, et al. Concordance between core needle biopsy and surgical excision for breast cancer tumor grade and biomarkers. Breast Cancer Res Treat. 2022;193:151–9. https://doi.org/10.1007/s10549-022-06548-w

    Article  CAS  PubMed  Google Scholar 

  5. Kim JK, Marco MR, Roxburgh CSD, Chen CT, Cercek A, Strombom P, et al. Survival after induction chemotherapy and chemoradiation versus chemoradiation and adjuvant chemotherapy for locally advanced rectal cancer. Oncologist. 2022;27:380–8. https://doi.org/10.1093/oncolo/oyac025

    Article  PubMed  PubMed Central  Google Scholar 

  6. Walle T, Kraske JA, Liao B, Lenoir B, Timke C, von Bohlen Und Halbach E, et al. Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. Sci Adv. 2022;8:eabh4050. https://doi.org/10.1126/sciadv.abh4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ** J, Tang Y, Hu C, Jiang LM, Jiang J, Li N, et al. Multicenter, randomized, phase III trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in Locally Advanced Rectal Cancer (STELLAR). J Clin Oncol. 2022;40:1681–92. https://doi.org/10.1200/jco.21.01667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang L, et al. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022;23:e105–e15. https://doi.org/10.1016/s1470-2045(22)00066-3

    Article  CAS  PubMed  Google Scholar 

  9. Dai H, Si X, Wang H, Chi L, Gao C, Wang Z, et al. Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med Chem Res. 2022;31:1351–68. https://doi.org/10.1007/s00044-022-02897-9

    Article  CAS  Google Scholar 

  10. Gomes AR, Pires AS, Abrantes AM, Gonçalves AC, Costa SC, Varela CL, et al. Design, synthesis, and antitumor activity evaluation of steroidal oximes. Bioorg Med Chem. 2021;46:116360. https://doi.org/10.1016/j.bmc.2021.116360

    Article  CAS  PubMed  Google Scholar 

  11. Sun J, Mu J, Wang S, Jia C, Li D, Hua H, et al. Design and synthesis of chromone-nitrogen mustard derivatives and evaluation of anti-breast cancer activity. J Enzyme Inhib Med Chem. 2022;37:431–44. https://doi.org/10.1080/14756366.2021.2018685

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed NM, Youns MM, Soltan MK, Said AM. Design, synthesis, molecular modeling and antitumor evaluation of novel indolyl-pyrimidine derivatives with EGFR inhibitory activity. Molecules. 2021;26. https://doi.org/10.3390/molecules26071838.

  13. Luo G, Ma Y, Liang X, **e G, Luo Y, Zha D, et al. Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg Chem. 2020;104:104356. https://doi.org/10.1016/j.bioorg.2020.104356

    Article  CAS  PubMed  Google Scholar 

  14. Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem. 2023;246:114946. https://doi.org/10.1016/j.ejmech.2022.114946

    Article  CAS  PubMed  Google Scholar 

  15. Takasaki I, Watanabe A, Okada T, Kanayama D, Nagashima R, Shudo M, et al. Design and synthesis of pyrido[2,3-d]pyrimidine derivatives for a novel PAC1 receptor antagonist. Eur J Med Chem. 2022;231:114160. https://doi.org/10.1016/j.ejmech.2022.114160

    Article  CAS  PubMed  Google Scholar 

  16. Li G, **ao K, Shi M, Shuai J, Xu Z, Li Z, et al. 4-Oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-d]pyrimidine derivatives: design, synthesis, insecticidal assay and binding mode studies. Chem Biodivers. 2022;19:e202200236. https://doi.org/10.1002/cbdv.202200236

    Article  CAS  PubMed  Google Scholar 

  17. Kang D, Sun Y, Feng D, Gao S, Wang Z, **g L, et al. Development of novel dihydrofuro[3,4-d]pyrimidine derivatives as HIV-1 NNRTIs to overcome the highly resistant mutant strains F227L/V106A and K103N/Y181C. J Med Chem. 2022;65:2458–70. https://doi.org/10.1021/acs.jmedchem.1c01885

    Article  CAS  PubMed  Google Scholar 

  18. Frati L. Reconsidering Otto Warburg’s glycolytic shift: pyrimidine derivatives are effective for the treatment of tumors exerting aerobic glycolysis. Panminerva Med. 2022;64:567–8. https://doi.org/10.23736/s0031-0808.22.04658-4

    Article  PubMed  Google Scholar 

  19. Ying DX, Wang J, Li XF, Zhang W, Rao GW. Design, synthesis and biological characteristics of pyrazolo[3,4-d]pyrimidine derivatives as potential VEGFR-2 inhibitors. Future Med Chem. 2022;14:1649–62. https://doi.org/10.4155/fmc-2022-0130

    Article  CAS  PubMed  Google Scholar 

  20. Ding R, Wang X, Fu J, Chang Y, Li Y, Liu Y, et al. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with thieno[2,3-d]pyrimidine substitution. Eur J Med Chem. 2022;237:114398. https://doi.org/10.1016/j.ejmech.2022.114398

    Article  CAS  PubMed  Google Scholar 

  21. Wu R, Liu T, Wu S, Li H, Song R, Song B. Synthesis, antibacterial activity, and action mechanism of novel sulfonamides containing oxyacetal and pyrimidine. J Agric Food Chem. 2022;70:9305–18. https://doi.org/10.1021/acs.jafc.2c02099

    Article  CAS  PubMed  Google Scholar 

  22. Sayed AI, Mansour YE, Ali MA, Aly O, Khoder ZM, Said AM, et al. Novel pyrrolopyrimidine derivatives: design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. J Enzyme Inhib Med Chem. 2022;37:1821–37. https://doi.org/10.1080/14756366.2022.2090546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdel-Aziz SA, Taher ES, Lan P, Asaad GF, Gomaa HAM, El-Koussi NA, et al. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg Chem. 2021;111:104890. https://doi.org/10.1016/j.bioorg.2021.104890

    Article  CAS  PubMed  Google Scholar 

  24. Denel-Bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity-past 10 years (2010-2020). Eur J Med Chem. 2022;231:114136. https://doi.org/10.1016/j.ejmech.2022.114136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siniavin AE, Novikov MS, Gushchin VA, Terechov AA, Ivanov IA, Paramonova MP, et al. Antiviral activity of N(1),N(3)-disubstituted uracil derivatives against SARS-CoV-2 variants of concern. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms231710171.

  26. Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev. 2016;116:14379–455. https://doi.org/10.1021/acs.chemrev.6b00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan I, Tantray MA, Hamid H, Sarwar Alam M, Sharma K, Kesharwani P. Design, synthesis, in vitro antiproliferative evaluation and GSK-3β kinase inhibition of a new series of pyrimidin-4-one based amide conjugates. Bioorg Chem. 2022;119:105512. https://doi.org/10.1016/j.bioorg.2021.105512

    Article  CAS  PubMed  Google Scholar 

  28. Dolatkhah Z, Javanshir S, Sadr AS, Hosseini J, Sardari S. Synthesis, molecular docking, molecular dynamics studies, and biological evaluation of 4H-chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives as potential antileukemic agents. J Chem Inform Model. 2017;57:1246–57. https://doi.org/10.1021/acs.jcim.6b00138

    Article  CAS  Google Scholar 

  29. Bantzi M, Augsburger F, Loup J, Berset Y, Vasilakaki S, Myrianthopoulos V, et al. Novel aryl-substituted pyrimidones as inhibitors of 3-mercaptopyruvate sulfurtransferase with antiproliferative efficacy in colon cancer. J Med Chem. 2021;64:6221–40. https://doi.org/10.1021/acs.jmedchem.1c00260

    Article  CAS  PubMed  Google Scholar 

  30. Olszewska B, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. 4-Hydroxypiperidines and their flexible 3-(Amino)propyloxy analogues as non-imidazole histamine H3 receptor antagonist: further structure−activity relationship exploration and in vitro and in vivo pharmacological evaluation. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19041243.

  31. Choi HS, Rucker PV, Wang Z, Fan Y, Albaugh P, Chopiuk G. et al. R)-2-Phenylpyrrolidine substituted imidazopyridazines: a new class of potent and selective pan-TRK inhibitors. ACS Med Chem Lett. 2015;6:562–7. https://doi.org/10.1021/acsmedchemlett.5b00050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Magin RS, Liu X, Felix A, Bratt AS, Chan WC, Buhrlage SJ. Small molecules as tools for functional assessment of deubiquitinating enzyme function. Cell Chem Biol. 2021;28:1090–100. https://doi.org/10.1016/j.chembiol.2021.04.021

    Article  CAS  PubMed  Google Scholar 

  33. Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 2017;550:481–6. https://doi.org/10.1038/nature24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barbaraci C, Giurdanella G, Leotta CG, Longo A, Amata E, Dichiara M, et al. Haloperidol metabolite II valproate ester (S)-(-)-MRJF22: preliminary studies as a potential multifunctional agent against uveal melanoma. J Med Chem. 2021;64:13622–32. https://doi.org/10.1021/acs.jmedchem.1c00995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Zhang C, Zhang X, Wang J, Zhao L, Zhao D, et al. Design, synthesis and biological evaluation of 2-aminopyrimidine-based LSD1 inhibitors. Bioorg Chem. 2022;121:105699. https://doi.org/10.1016/j.bioorg.2022.105699

    Article  CAS  PubMed  Google Scholar 

  36. Zang Y, Huang L, Chen X, Li C, Ma J, Chen X, et al. Novel nitric oxide-releasing derivatives of pyranocarbazole as antitumor agents: design, synthesis, biological evaluation, and nitric oxide release studies. Eur J Med Chem. 2022;244:114832. https://doi.org/10.1016/j.ejmech.2022.114832

    Article  CAS  PubMed  Google Scholar 

  37. Patel OPS, Arun A, Singh PK, Saini D, Karade SS, Chourasia MK, et al. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur J Med Chem. 2019;167:226–44. https://doi.org/10.1016/j.ejmech.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  38. Guo N, Peng Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol. 2013;9:6–11. https://doi.org/10.1111/j.1743-7563.2012.01535.x

    Article  PubMed  Google Scholar 

  39. Wei B, Lin Q, Ji YG, Zhao YC, Ding LN, Zhou WJ, et al. Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br J Pharmacol. 2018;175:3315–32. https://doi.org/10.1111/bph.14367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu H-J, Zhang X, Gao Y-X, Li J-Z, Wang H-L. Design, synthesis, and antifungal activities of new β-methoxyacrylate analogues. J Chin Chem Soc. 2013;60:27–34. https://doi.org/10.1002/jccs.201200295

    Article  CAS  Google Scholar 

  41. O’Dowd CR, Helm MD, Rountree JSS, Flasz JT, Arkoudis E, Miel H, et al. Identification and structure-guided development of pyrimidinone based USP7 inhibitors. ACS Med Chem Lett. 2018;9:238–43. https://doi.org/10.1021/acsmedchemlett.7b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, et al. Structure-guided development of a potent and selective non-covalent active-site inhibitor of USP7. Cell Chem Biol. 2017;24:1490–500.e11. https://doi.org/10.1016/j.chembiol.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li P, Liu Y, Yang H, Liu HM. Design, synthesis, biological evaluation and structure-activity relationship study of quinazolin-4(3H)-one derivatives as novel USP7 inhibitors. Eur J Med Chem. 2021;216:113291. https://doi.org/10.1016/j.ejmech.2021.113291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U21A20416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuze Dong, Hongmin Liu or Qiurong Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, L., Wang, H., Yu, F. et al. Design, synthesis and antitumor activity evaluation of pyrimidine derivatives containing 4-hydroxypiperidine group. Med Chem Res 32, 2125–2137 (2023). https://doi.org/10.1007/s00044-023-03076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03076-0

Keywords

Navigation