Log in

Asciminib: first FDA approved allosteric inhibitor of BCR-ABL1 for the treatment of chronic myeloid leukemia

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chronic myelogenous leukemia (CML), a type of cancer of the white blood cells, arises due to the constitutive activity of the BCR-ABL1 oncoprotein. Several non-specific ATP competitive tyrosine kinase inhibitors including imatinib (Gleevec), dasatinib (Sprycel), nilotinib (Tasigna), and bosutinib (Bosulif) can enhance the overall survival rate of CML patients. However, many of these drugs became resistant due to mutation of the threonine T315 to isoleucine (T315I). Asciminib binds myristate pocket in an allosteric site, outside the catalytic/ATP-binding site. It inhibits both wide- type and mutated T315I BCR-ABL1 activities in vitro, in vivo and in human clinical trials. This very short review discusses the current CML treatment options and mechanism of action, dosage and administration, pharmacokinetic, drug interaction, and side effects of newly approved acciminib.

Graphical Abstract

Asciminib (Scemblix)

Allosteric Inhibitor of BCR-ABL1; Binding to myristate pocket

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

ABL1 :

Abelson proto-oncogene 1

ATP:

adenosine triphosphate

AP:

accelerated phase

AUC:

Area under the curve

BC:

Blast crisis

BCR:

Breakpoint cluster region protein

CML:

Chronic myelogenous leukemia

DCM:

dichloromethane

DIEA:

N,N-diisopropylethylamine

DMF:

N,N-dimethylformamide

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

KD:

Kinase domain

MMR:

Major molecular response

P-gp:

Permeability glycoprotein

Ph+ :

Philadelphia chromosome-positive

i-PrOH:

Isopropyl alcohol

PD:

Pharmacodynamics

PK:

Pharmacokinetic

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TKIs:

Tyrosine kinase inhibitors

WT:

Wild type

References

  1. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82. https://doi.org/10.1126/science.2408149.

    Article  CAS  PubMed  Google Scholar 

  2. Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med. 1988;319:990–8. https://doi.org/10.1056/NEJM198810133191506.

    Article  CAS  PubMed  Google Scholar 

  3. Kantarjian HM, Baccarani M, Jabbour E, Saglio G, Cortes JE. Second-generation tyrosine kinase inhibitors: the future of frontline CML therapy. Clin Cancer Res. 2011;17:1674–83.

    Article  CAS  PubMed  Google Scholar 

  4. Fava C, Morotti A, Dogliotti I, Saglio G, Rege-Cambrin G. Update on emerging treatments for chronic myeloid leukemia. Expert Opin Emerg Drugs. 2015;20:183–96.

    Article  CAS  PubMed  Google Scholar 

  5. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol. 2016;91:252–65.

    Article  CAS  PubMed  Google Scholar 

  6. García-Gutiérrez V, Hernández-Boluda JCA An evaluation of asciminib for patients with chronic myeloid leukemia previously treated with ≥2 Tyrosine Kinase Inhibitors. Expert Rev Hematol. 2022. https://doi.org/10.1080/17474086.2022.2080049.

  7. Soverini S, Gnani A, Colarossi S, Castagnetti F, Abruzzese E, Paolini S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of develo** additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood 2009;114:2168–71. https://doi.org/10.1182/blood-2009-01-197186.

    Article  CAS  PubMed  Google Scholar 

  8. Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol 2022;171:103580. https://doi.org/10.1016/j.critrevonc.2022.103580.

    Article  PubMed  Google Scholar 

  9. Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, et al. Discovery of Asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61:8120–35.

    Article  CAS  PubMed  Google Scholar 

  10. Jones JK, Thompson EM. Allosteric inhibition of ABL kinases: therapeutic potential in cancer. Mol Cancer Ther 2020;19:1763–9. https://doi.org/10.1158/1535-7163.MCT-20-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Apperley JF, Part II. Management of resistance to imatinib in chronic myeloid leukemia. Lancet Oncol. 2007;8:1116–28.

    Article  CAS  PubMed  Google Scholar 

  12. Lu S, He X, Ni D, Zhang J. Allosteric modulator discovery: from serendipity to structure-based design. J Medicinal Chem. 2019;62:6405–21.

    Article  CAS  Google Scholar 

  13. Yueh C, Rettenmaier J, **a B, Hall DR, Alekseenko A, Porter KA, et al. Kinase atlas: druggability analysis of potential allosteric sites in kinases. J Medicinal Chem. 2019;62:6512–24.

    Article  CAS  Google Scholar 

  14. Gleixner KV, Filik Y, Berger D, Schewzik C, Stefanzl G, Sadovnik I, et al. Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1T315I-compound mutations. Am J Cancer Res 2021;11:4470–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Réa D, Mauro MJ, Boquimpani C, Minami Y, Lomaia E, Voloshin S, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood 2021;138:2031–41. https://doi.org/10.1182/blood.2020009984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manley PW, Barys L, Cowan-Jacob SW. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk Res 2020;98:106458 https://doi.org/10.1016/j.leukres.2020.106458.

    Article  CAS  PubMed  Google Scholar 

  17. Romero D. Initial results with asciminib in CML. Nat Rev Clin Oncol. 2020;17:135 https://doi.org/10.1038/s41571-019-0324-z.

    Article  PubMed  Google Scholar 

  18. Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelo DJ, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med 2019;381:2315–26. https://doi.org/10.1056/NEJMoa1902328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elrashedy AA, Ramharack P, Soliman MES. The perplexity of synergistic duality: inter-molecular mechanisms of communication in BCR-ABL1. Anticancer Agents Med Chem. 2019;19:1642–50. https://doi.org/10.2174/1871520619666190620120144.

    Article  CAS  PubMed  Google Scholar 

  20. Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature 2017;543:733–7. https://doi.org/10.1038/nature21702.

    Article  CAS  PubMed  Google Scholar 

  21. Lissauer H. Zwei Falle von Leukamie. Berl Klinische Wochesnschrift. 1865;2:403–4.

    Google Scholar 

  22. Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2(:705–13.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu HH, Wu DP, Du X, Zhang X, Liu L, Ma J, et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: a non-inferiority, randomised phase 3 trial. Lancet Oncol. 2018;19:871–9.

    Article  CAS  PubMed  Google Scholar 

  25. Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. DNA intrastrand cross-link at the 5’-GA-3’ sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004;95:454–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992;6:163–73.

    Article  CAS  PubMed  Google Scholar 

  27. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol. 2009;6:638–47.

    Article  CAS  PubMed  Google Scholar 

  28. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992;6:163–73.

    Article  CAS  PubMed  Google Scholar 

  29. Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F, et al. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med. 1997;337:223–9.

    Article  CAS  PubMed  Google Scholar 

  30. Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev. 2016;116:14379–455. https://doi.org/10.1021/acs.chemrev.6b00209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cokic VP, Smith RD, Beleslin-Cokic BB, et al. “Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase”. J Clin Invest. 2003;111:231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koç A, Wheeler LJ, Mathews CK, Merrill GF. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem. 2004;279:223–30.

    Article  PubMed  Google Scholar 

  33. Rosti G, Testoni N, Martinelli G, Baccarani M. The cytogenetic response as a surrogate marker of survival. Semin Hematol. 2003;40:56–61. https://doi.org/10.1053/shem.2003.50042.

    Article  PubMed  Google Scholar 

  34. Wetzler M, Segal D. “Omacetaxine as an anticancer therapeutic: what is old is new again”. Curr Pharm Des. 2011;17:59–64.

    Article  CAS  PubMed  Google Scholar 

  35. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European Leukemia Net 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84. https://doi.org/10.1038/s41375-020-0776-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, et al. IRIS Investigators. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23:1054–61. https://doi.org/10.1038/leu.2009.38. Erratum in: Leukemia. 2010 May;24(5):1102.

    Article  CAS  PubMed  Google Scholar 

  37. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 2003;4:75–85. https://doi.org/10.1016/s1470-2045(03)00979-3.

    Article  PubMed  Google Scholar 

  38. Keating GM. Dasatinib: a review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs. 2017;77:85–96. https://doi.org/10.1007/s40265-016-0677-x.

    Article  CAS  PubMed  Google Scholar 

  39. Cortes JE, Kantarjian HM, Brümmendorf TH, Kim DW, Turkina AG, Shen ZX, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118:4567–76. https://doi.org/10.1182/blood-2011-05-355594. Erratum in: Blood. 2013 Oct 3;122(14):2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.

    Article  PubMed  Google Scholar 

  41. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. IRIS investigators. long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376:917–27. https://doi.org/10.1056/NEJMoa1609324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  PubMed  Google Scholar 

  43. Breccia M, Alimena G. Nilotinib: a second-generation tyrosine kinase inhibitor for chronic myeloid leukemia. Leuk Res. 2010;34:129–34. https://doi.org/10.1016/j.leukres.2009.08.031.

    Article  CAS  PubMed  Google Scholar 

  44. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9.

    Article  CAS  PubMed  Google Scholar 

  45. Khoury HJ, Cortes JE, Kantarjian HM, Gambacorti-Passerini C, Baccarani M, Kim DW, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119:3403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chuah C, Kim DW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018;36:231–7. https://doi.org/10.1200/JCO.2017.74.7162.

    Article  CAS  PubMed  Google Scholar 

  47. Gambacorti-Passerini C, le Coutre P, Piazza R. The role of bosutinib in the treatment of chronic myeloid leukemia. Future Oncol. 2020;16:4395–408. https://doi.org/10.2217/fon-2019-0555.

    Article  CAS  PubMed  Google Scholar 

  48. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. PACE Investigators. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96. https://doi.org/10.1056/NEJMoa1306494.

    Article  CAS  PubMed  Google Scholar 

  50. Ren X, Pan X, Zhang Z, Wang D, Lu X, Li Y, et al. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (Bcr-Abl) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J Med Chem. 2013;56:879–94. https://doi.org/10.1021/jm301581y.

    Article  CAS  PubMed  Google Scholar 

  51. Tran P, Hanna I, Eggimann FK, Schoepfer J, Ray T, Zhu B, et al. Disposition of asciminib, a potent BCR-ABL1 tyrosine kinase inhibitor, in healthy male subjects. Xenobiotica. 2020;50:150–69. https://doi.org/10.1080/00498254.2019.1594449.

    Article  CAS  PubMed  Google Scholar 

  52. Hoch M, Sengupta T, Hourcade-Potelleret F. Pharmacokinetic drug interactions of asciminib with the sensitive cytochrome P450 probe substrates midazolam, warfarin, and repaglinide in healthy participants. Clin Transl Sci. 2022;15:1406–16. https://doi.org/10.1111/cts.13252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia-Gutiérrez V, Luna A, Alonso-Dominguez JM, Estrada N, Boque C, **coy B, et al. Safety and efficacy of asciminib treatment in chronic myeloid leukemia patients in real-life clinical practice. Blood Cancer J. 2021;11:16 https://doi.org/10.1038/s41408-021-00420-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Malik S, Hassan S, Eşkazan AE. Novel BCR-ABL1 tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Expert Rev Hematol. 2021;14:975–8. https://doi.org/10.1080/17474086.2021.1990034.

    Article  CAS  PubMed  Google Scholar 

  55. Mian AA, Rafiei A, Haberbosch I, Zeifman A, Titov I, Stroylov V, et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph + ) leukemias harboring the T315I mutation. Leukemia. 2015;29:1104–14. https://doi.org/10.1038/leu.2014.326.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya K. De.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, S.K. Asciminib: first FDA approved allosteric inhibitor of BCR-ABL1 for the treatment of chronic myeloid leukemia. Med Chem Res 32, 424–433 (2023). https://doi.org/10.1007/s00044-022-03011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-03011-9

Keywords

Navigation