Log in

Why do Acromyrmex nests have thatched entrance structures? Evidence for use as a visual homing cue

  • Short Communication
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Ants can learn to recognize and memorize visual aspects around their nests for visual guidance. Thatched entrance structures are a trademark of the genus Acromyrmex. We hypothesized that the thatched structure serves as a visual cue for Acromyrmex balzani workers while homing. Fifteen colonies located in a pasture area were used to test whether thatched structure displacement and odor removal alter the behavior of returning ants. Nests were divided into three groups: (1) control observations, (2) displaced thatched structure, which we moved 30 cm to the right side of the nest entrance and (3) displaced and odorless thatched structure. Route direction and time spent by five workers to reach the nest entrance were measured. For manipulated nests, workers were disoriented and took longer to reach the nest entrance relative to control colonies. These results are in accordance with the idea that environmental alterations may influence ant navigational abilities and suggest that A. balzani workers can perceive recent modifications around the nest while homing. The observed disorientation by workers in response to the displaced and odorless thatched entrance suggests that it can act as visual cue to homing behavior of A. balzani. Future researches manipulating thatched structure and chemical cues around the nest entrance may generate knowledge about the importance of both types of cue for navigation in ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109(10):835–846

    Article  Google Scholar 

  • Bregy P, Sommer S, Wehner R (2008) Nest-mark orientation versus vector navigation in desert ants. J Exp Biol 211:1868–1873

    Article  PubMed  Google Scholar 

  • Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80:261–268

    Article  Google Scholar 

  • Collett M (2014) A desert ant’s memory of recent visual experience and the control of route guidance. Proc R Soc Lond B Biol Sci 281(1787):20140634

    Article  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3(7):542–552

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (ed) Spatial representation in animals. Oxford University Press, New York, pp 18–53

    Google Scholar 

  • Delabie JHC, Alves HSL, Reuss-Strenzel GM, Carmo AFR, Nascimento IC (2011) Distribuição das formigas cortadeiras Acromyrmex e Atta no Novo Mundo. In: Formigas-cortadeiras: da bioecologia ao manejo. Della Lucia, TMC, ed. UFV-Universidade Federal de Viçosa, Viçosa-MG

  • Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol 219:3137–3145

    Article  PubMed  Google Scholar 

  • Forti LC, De Andrade ML, Andrade APP, Lopes JF, Ramos VM (2006) Bionomics and identification of Acromyrmex (Hymenoptera: Formicidae) through an illustrated key. Sociobiology 48(1):135–153

    Google Scholar 

  • Graham P, Mangan M (2015) Insect navigation: do ants live in the now? J Exp Biol 218(6):819–823

    Article  PubMed  Google Scholar 

  • Graham P, Philippides A (2017) Vision for navigation: what can we learn from ants? Arthropod. Struct Dev 46:718–722

    Article  Google Scholar 

  • Harrison JF, Fewell JH, Stiller TM, Breed MD (1989) Effects of experience on use of orientation cues in the giant tropical ant. Anim Behav 37(5):869–871

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Howlett BG, Clarke AR (2005) Oviposition deterrence is likely an effect, not a mechanism, in the leaf beetle Chrysophtharta bimaculata (Olivier) (Coleoptera: Chrysomelidae). J Insect Behav 18(5):609–618

    Article  Google Scholar 

  • Kim TW, Christy JH (2015) A mechanism for visual orientation may facilitate courtship in a fiddler crab. Anim Behav 101:61–66

    Article  Google Scholar 

  • Kim TW, Kim TK, Choe JC (2010) Compensation for homing errors by using courtship structures as visual landmarks. Behav Ecol 21(4):836–842

    Article  Google Scholar 

  • Knaden M, Graham P (2016) The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu Rev Entomol 61:63–76

    Article  CAS  PubMed  Google Scholar 

  • Layne JE, Barnes WJP, Duncan LMJ (2003) Mechanisms of homing in the fiddler crab Uca rapax 2. Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442

    Article  PubMed  Google Scholar 

  • LeBrun EG, Moffett M, Holway DA (2011) Convergent evolution of levee building behavior among distantly related ant species in a floodplain ant assemblage. Insectes Sociaux 58(2):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23(5):944–954

    Article  Google Scholar 

  • Moller P, Görner P (1994) Homing by path integration in the spider Agelena labyrinthica Clerck. J Comp Physiol A 174:221–229

    Article  Google Scholar 

  • Moreira DDO, Lucia T, Vilela EF (1994) Orientacão de Operarias de Acromyrmex subterraneus subterraneus no Retorno ao Ninho. Anais da Academia Brasileira de Ciências 66(2):99–130

    Google Scholar 

  • Morgan DE (2009) Trail pheromones of ants. Physiol Entomol 34(1):1–17

    Article  CAS  Google Scholar 

  • Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371

    Article  CAS  PubMed  Google Scholar 

  • Narendra A, Si A, Sulikowski D, Cheng K (2007) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav Ecol Sociobiol 61:1543–1553

    Article  Google Scholar 

  • Narendra A, Gourmaud S, Zeil J (2013) Map** the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683

    Article  PubMed  Google Scholar 

  • Nicholson DJ, Judd SPD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838

    PubMed  Google Scholar 

  • Poderoso JCM, Ribeiro GT, Gonçalves GB, Mendonça PD, Polanczyk RA, Zanetti R, Serrão JE, Zanuncio JC (2009) Nest and foraging characteristics of Acromyrmex landolti balzani (Hymenoptera: Formicidae) in Northeast Brazil. Sociobiology 54(2):361–371

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 10 Mar 2017

  • Rodrigues PA, Oliveira PS (2014) Visual navigation in the neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest. Behav Proc 109:48–57

    Article  Google Scholar 

  • Superintendência de Estudos Sociais e Econômicos da Bahia (SEEI) (1999) Balanço hídrico do Estado da Bahia

  • Steck K (2012) Just follow your nose: homing by olfactory cues in ants. Curr Opin Neurobiol 22(2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212

    Article  CAS  PubMed  Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    CAS  PubMed  Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571

    Article  Google Scholar 

  • Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Valdomiro Silva for logistical support for data collection, Cristina Vasto Madureira for photo editing, José Sena and Marcondes Andrade Dias for help in fieldwork, Hermanna V. V. de Oliveira and Sirleide S. Rocha for filming. Thanks to Alessandro Oliveira Silva and Welber da Costa Pina for earlier comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Madureira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 483962 KB)

Supplementary material 2 (MOV 221082 KB)

Supplementary material 3 (MP4 454964 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, I.J.S., Santos, M.F. & Madureira, M.S. Why do Acromyrmex nests have thatched entrance structures? Evidence for use as a visual homing cue. Insect. Soc. 66, 165–170 (2019). https://doi.org/10.1007/s00040-018-0676-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-018-0676-x

Keywords

Navigation