Log in

A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Thriving populations of invasive species often decline, but the mechanisms behind such declines are rarely elucidated. The microbial community living within insects can have significant impacts on host health and population dynamics and may be one such mechanism. Here, we use Illumina RNAseq and 16S amplicon sequencing to compare the bacterial communities, and investigate the presence of viruses, in queens of the invasive yellow crazy ant, Anoplolepis gracilipes, from populations in various stages of decline or expansion in Australia. Black queen cell virus and sequences with homology to the Dicistroviridae family of viruses were detected in queens from declining ant populations. This is the first instance of sequences with homology to a virus being found in A. gracilipes and may indicate a new virus. The overall bacterial communities were not statistically different between the population types and a number of potential mutualists were discovered. Several putative pathogens were also detected, including Candidatus Rhabdochlamydia, the entomopathogen Serratia marcescens and the reproductive parasite Candidatus Cardinium. These taxa are known to significantly affect host biology in other organisms. Our survey has identified several candidates that may be responsible for population declines of this invasive ant, and therefore may have potential as biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews S (2015) FastQC v 0.11.3 Babraham Bioinformatics. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

  • Arif B, Escasa S, Pavlik L (2011) Biology and genomics of viruses within the genus Gammabaculovirus. Viruses 3:2214–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartram A, Lynch M, Stearns J, Moreno-Hagelsieb G, Neufeld J (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microb 77(11):3846–3852

    Article  CAS  Google Scholar 

  • Bokulich N, Subramanian S, Faith J, Gevers D, Gordon J, Knight R, Mills D, Caporaso G (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59

    Article  CAS  PubMed  Google Scholar 

  • Briano J (2005) Long-term studies of the red imported fire ant, Solenopsis invicta, infected with the microsporidia Vairimorpha invictae and Thelohania solenopsae in Argentina. Environ Entomol 34(1):124–132

    Article  Google Scholar 

  • Camacho C, Madden T, Ma N, Tao T, Agarwala R, Morgulis A (2008) BLAST® command line applications user manual. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  • Cameron S, Lozier J, Strange J, Koch J, Cordes N, Solter L, Griswold T (2011) Patterns of widespread decline in North American bumble bees. PNAS 108(2):662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon R (1993) Prospects and progress for Bacillus thuringiensis based pesticides. Pest Manag Sci 37:331–335

    Article  Google Scholar 

  • Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N, Owens S, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chantawannakul P, Ward L, Boonham N, Brown M (2006) A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J Invertebr Pathol 91:69–73

    Article  CAS  PubMed  Google Scholar 

  • Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v 6.1.11: User manual and tutorial. PRIMER-E, Plymouth

  • Cooling M (2016) Population dynamics and pathogens of the invasive yellow crazy ant (Anoplolepis gracilipes) in Arnhem Land, Australia. Dissertation, Victoria University of Wellington

  • Cooling M, Hoffmann B (2015) Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biol Invasions 17:3351–3357

    Article  Google Scholar 

  • Corsaro D, Thomas V, Goy G, Venditti D, Radek R, Greub G (2007) ‘Candidatus Rhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 30:221–228

    Article  CAS  PubMed  Google Scholar 

  • Cox M, Peterson D, Biggs P (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Article  Google Scholar 

  • Cox-Foster D, Conlan S, Holmes E, Palacios G, Evans J, Moran N, Quan P, Briese T, Hornig M, Geiser D, Martinson V, vanEngelsdorp D, Kalkstein A, Drysdale A, Hui J, Zhai J, Cui L, Hutchison S, Simons J, Egholm M, Pettis J, Lipkin W (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Crotti E, Rizzi Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microb 76(21):6963–6970

    Article  CAS  Google Scholar 

  • de Miranda J, Cordoni G, Budge G (2010) The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol 103:S30–S47

    Article  PubMed  Google Scholar 

  • Edgar R (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Evans J, Schwarz R (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19(12):614–620

    Article  CAS  PubMed  Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Article  Google Scholar 

  • Grabherr M, Haas B, Yassour M, Levin J, Thompson D et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 26(7):644–652

    Google Scholar 

  • Gruber M (2012) Genetic factors associated with variation in abundance of the invasive yellow crazy ant (Anoplolepis gracilipes). Dissertation, Victoria University of Wellington

  • Gruber M, Burne A, Abbott K, Pierce R, Lester P (2012) Population decline but increased distribution of an invasive ant genotype on a Pacific atoll. Biol Invasions 15(3):599–612

    Article  Google Scholar 

  • Haines I, Haines J, Cherrett J (1994) The impact and control of the Crazy ant, Anoplolepis longipes (Jerd.), in the Seychelles. In: Williams D (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 206–218

    Google Scholar 

  • He H, Chen Y, Zhang Y, Wei C (2011) Bacteria associated with gut lumen of Camponotus japonicus. Environ Entomol 40(6):1405–1409

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B (2015) Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia. Bull Entomol Res 105:141–151

    Article  CAS  PubMed  Google Scholar 

  • Holway D, Lach L, Suarez A, Tsutsui N, Case T (2002) The causes and consequences of ant invasions. Annu Rev Ecol Evol Syst 33:181–233

    Article  Google Scholar 

  • Hunter M, Perlman S, Kelly S (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc B 270:2185–2190

    Article  PubMed  PubMed Central  Google Scholar 

  • Huson D, Mitra S, Ruscheweyh H, Weber N, Schuster S (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21(9):1552–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishak H, Plowes R, Sen R, Kellner K, Meyer E, Estrada D, Dowd S, Mueller U (2011a) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61:821–831

    Article  PubMed  Google Scholar 

  • Ishak H, Miller J, Sen R, Dowd S, Meyer E, Mueller U (2011b) Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci Rep 1:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson H, Dhaygude K, Lindstrom S, Helantera H, Sundstrom L, Trontti K (2013) A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS One 8(11):e79777

    Article  PubMed  PubMed Central  Google Scholar 

  • Lach L, Hoffmann B (2011) Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos 120:9–16

    Article  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA et al (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lauzon C, Bussert T, Sjogren R, Prokopy R (2003) Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera: Tephritidae). Eur J Entomol 100:87–92

    Article  Google Scholar 

  • Lester P, Gruber M (2016) Booms, busts and population collapses in invasive ants. Biol Invasions. doi:10.1007/s10530-016-1214-2

    Google Scholar 

  • Liu S, Vijayendran D, Bonning B (2011) Next generation sequencing technologies for insect virus discovery. Viruses 3:1849–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majer J (1984) Recolonisation by ants in rehabilitated open-cut mines in Northern Australia. Reclam Reveg Res 2:279–298

    Google Scholar 

  • Martin S, Highfield A, Brettell L, Villalobos E, Budge G, Powell M, Nikaido S, Schroeder D (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306

    Article  CAS  PubMed  Google Scholar 

  • Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinform 13:31

    Article  CAS  Google Scholar 

  • McDonald D, Price M, Goodrich J, Nawrocki E, DeSantis T, Probst A, Andersen G, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618

    Article  CAS  PubMed  Google Scholar 

  • Paulson A, von Aderkas P, Perlman S (2014) Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus). BMC Microbiol 14:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter S, Valles S, Oi D (2013) Host specificity and colony impacts of the fire ant pathogen, Solenopsis invicta virus 3. J Invertebr Pathol 114:1–6

    Article  PubMed  Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Robertson C (2003) Spectrophotometry’s next generation technology. American Biotechnology Laboratory

  • Rokop Z, Horton M, Newton I (2015) Interactions between co-occurring lactic acid bacteria in the honey bee hive. Appl Environ Entomol. doi:10.1128/AEM.01259-15AEM.01259-15

    Google Scholar 

  • Rose E, Harris R, Glare T (1999) Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N Z J Zool 26:179–190

    Article  Google Scholar 

  • Russell J (2012) The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecol News 16:7–23

    Google Scholar 

  • Russell J, Moreau C, Goldman-Huertas B, Fujiwara M, Lohman D, Pierce N (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS 106(50):21236–21241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell J, Funaro C, Giraldo Y, Goldman-Huertas B, Suh D, Kronauer D, Moreau C, Pierce N (2012) A veritable menagerie of heritable bacteria from ants, butterflies and beyond: broad molecular surveys and a systematic review. PLoS One 7(12):e51027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schmid-Hempel P, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S, Escudero L, Salathe R, Scriven J, Schmid-Hempel P (2013) The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 83:823–837

    Article  Google Scholar 

  • Sébastien A, Gruber M, Lester P (2012) Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insect Soc 59:33–40

    Article  Google Scholar 

  • Sébastien A, Lester P, Hall R, Wang J, Moore N, Gruber M (2015) Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol Lett 11:20150610

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Priya N, Kumar J, Rana V, Ellango R, Joshi A, Priyadarshini G, Asokan R, Rajagopal R (2012) Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening. Infect Genet Evol 12:411–419

    Article  PubMed  Google Scholar 

  • Sirvio A, Pamilo P (2010) Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evol Biol 10:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinatha H, Jalali S, Sriram S, Chakravarthy A (2015) Isolation of microbes associated with field-collected populations of the egg parasitoid, Trichogramma chilonis capable of enhancing biotic fitness. Biocontrol Sci Technol 25(7):789–802

    Article  Google Scholar 

  • Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo de Souza M (2006) Baculoviruses—re-emerging biopesticides. Biotechnol Adv 24:143–160

    Article  CAS  PubMed  Google Scholar 

  • Tamura K (2002) Evolutionary distance estimation under heterogenous substitution pattern among lineages. Mol Biol Evol 19:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valles S (2012) Positive-strand RNA viruses infecting the red imported fire ant, Solenopsis invicta. Psyche 2012:1–14

    Article  Google Scholar 

  • Valles S, Oi D (2014) Successful transmission of Solenopsis invicta virus 3 to field colonies of Solenopsis invicta (Hymenoptera: Formicidae). Fla Entomol 97:1244–1246

    Article  Google Scholar 

  • Valles S, Porter S (2015) Dose response of red imported fire ant colonies to Solenopsis invicta virus 3. Arch Virol 160:2407–2413

    Article  CAS  PubMed  Google Scholar 

  • Valles S, Varone L, Ramirez L, Briano J (2009) Multiplex detection of Solenopsis invicta virus-1, -2, and -3. J Virol Methods 162:276–279

    Article  CAS  PubMed  Google Scholar 

  • Valles S, Oi D, Porter S (2010) Seasonal variation and the co-occurrence of four pathogens and a group of parasites among monogyne and polygyne fire ant colonies. Biol Control 54:342–348

    Article  Google Scholar 

  • Valles S, Oi D, Yu F, Tan X, Buss E (2012) Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant Nylanderia pubens. PLoS One 7(2):e31828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez A, Forsgren E, Fries I, Paxton R, Flaberg E, Szekely L, Olofsson T (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Liu Y, Graham R, Wilson K, Wu K (2014) Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog 10(10):e1004490

    Article  PubMed  PubMed Central  Google Scholar 

  • Young G, Bellis G, Brown G (2001) The crazy ant, Anoplolepis gracilipes (Smith) (Hymenoptera: Formicidae) in east Arnhem Land, Australia. Aust Entomol 28(3):97–104

    Google Scholar 

  • Zchori-Fein E, Perlman S (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many people that provided technical assistance, especially Daryl Lacey, Paul Augustin, Leanne Dzendolet, Tony Schultz and the many people involved with Conservation Volunteers Australia. Our thanks are due to Dhimurru Aboriginal Corporation and the traditional landowners of northeast Arnhem Land for access to the region and the staff of Rio Tinto for access to the mining leases and accommodation. This work was funded and supported by the Victoria University of Wellington Research Trust, CSIRO Australia, Rio Tinto Alcan, and the Dhimurru Aboriginal Corporation. M. Cooling was supported by a Victoria University of Wellington Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cooling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Supplementary material 2 (DOC 4795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooling, M., Gruber, M.A.M., Hoffmann, B.D. et al. A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists. Insect. Soc. 64, 197–207 (2017). https://doi.org/10.1007/s00040-016-0531-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-016-0531-x

Keywords

Navigation