Log in

Existence and asymptotic behavior of solutions to the Abelian Higgs model with impurity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the static Abelian Higgs model with impurity subject to external fields on \(\mathbb {R}^{3}\). The existence and regularity of the solutions are established under the condition that the gauge fields satisfy the Coulomb gauge. The boundedness of the order parameters and the asymptotic behavior of the solutions at the infinity are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  2. Yang, Y.: Solitons in Field Nonlinear Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  3. Ginzburg, V.L.: On the theory of superconductivity. Nuovo Cimento 2, 1234–1250 (1955)

    Article  MATH  Google Scholar 

  4. Yang, Y.: Electrically charged solitons in gauge field theory. Acta. Math. Sci. 30, 1975–2005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nielsen, H.N., Olesen, P.: Vortex-line models for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    Article  Google Scholar 

  6. Bardeen, J., Cooper, L.N., Scrieffer, J.R.: Theory of Meissner effect in superconductors. Phys. Rev. 97, 1724–1725 (1955)

    Article  Google Scholar 

  7. Gor’kov, L.P.: Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. Sov. Phys. JEPT 9, 1364–367 (1959)

    MATH  Google Scholar 

  8. Matsubara, T.: A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobs, L., Rebbi, C.: Interaction energy of superconducting vortices. Phys. Rev. B 19, 4486–4494 (1980)

    Article  Google Scholar 

  10. Bogomol’nyi, E.B.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  11. Prasad, M.K., Sommerfield, C.M.: Exact classical solution for the ’t Hooft monopole and the Julia-Zee Dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Article  Google Scholar 

  12. Taubes, C.H.: Arbitrary N-vortex solutions to the first-order Ginzburg–Landau equations. Commun. Math. Phys. 72(3), 277–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson, K.G.: Confinement of qurks. Phys. Rev. D 10, 2445–2458 (1974)

    Article  Google Scholar 

  14. Carroll, R.W., Glick, A.J.: On the Ginzburg–Landau equations. Arch. Ration. Mech. Anal. 16, 373–384 (1968)

    Article  MATH  Google Scholar 

  15. Yang, Y.: Existence, regularity and asymptotic behavior of the solutions to the Ginzburg–Landau equations on \(\mathbb{R}^{3}\). Commun. Math. Phys. 123, 147–161 (1989)

    Google Scholar 

  16. Yang, Y.: On the Abelian Higgs models with sources. J. Math. Pures Appl. 70, 325–344 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Yang, Y.: The existence of the Ginzburg–Landau equations on the plane by a direct variational method. Nonlinear Anal. 5, 147–161 (1994)

    Google Scholar 

  18. Giorgi, T.: Superconductors surrounded by normal materials. Proc. R. Soc. Edinb. 235, 331–356 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Zhai, J., Cai, Z.: Local minimizers with vortex pinning to Ginzburg–Landau functional in three dimensions. J. Math. Anal. Appl. 345, 535–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Forunais, S., Helffer, B.: On the Ginzburg–Landau critical field in three dimensions. Commun. Pure Appl. Math. 62, 215–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harrison, S., Kachru, S., Torroba, G.: A maximally supersymmetric Kondol model. Class. Quant. Grav. 29, 194005–194036 (2012)

    Article  MATH  Google Scholar 

  22. Benicasa, P., Ramallo, A.V.: Fermionic impurities in Cherm–Simons–Matter theories. JHEP 1202, 1–53 (2012)

    Google Scholar 

  23. Hoker, E.D., Kraus, P.: Magnetic brane solutions in AdS. JHEP 88, 1–41 (2009)

    Google Scholar 

  24. Hook, A., Kochru, S., Torroba, G.: Supersymmetric defect models and mirror symmetry. J. High Energy Phys. 11, 1–29 (2013)

    Google Scholar 

  25. Tong, D., Wang, K.: Vortices and impurities. J. High Energy Phys. 1, 1–17 (2014)

    Article  Google Scholar 

  26. Zhang, R., Li, H.: Sharp existence theorems for multiple vortices induced from magnetic impurities. Nonlinear Anal. 155, 117–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, A., Krusch, S., Muhamed, A.: Dynamics of vortices with magnetic impurities. ar**v:1512.01054 [hep-th] (2015)

  28. Han, X., Yang, Y.: Magnetic impurity inspired Abelian Higgs vortices. J. High Energy. Phys. 2016, 1–19 (2015)

    Article  MATH  Google Scholar 

  29. Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11471099 and 11671120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liang, Y. Existence and asymptotic behavior of solutions to the Abelian Higgs model with impurity. Z. Angew. Math. Phys. 70, 12 (2019). https://doi.org/10.1007/s00033-018-1054-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1054-2

Mathematics Subject Classification

Keywords

Navigation